Not only computer scientists, but also electrical engineers, and others interested in electronics are targeted here, and thus the presentation is directed toward understanding how a computer works, while still providing a broad and effective one-year introduction to classical and modern physics. The first half of the book covers many of the topics found in a standard introductory physics course, but with the selection tailored for use in the second half. This second part then covers the fundamentals of quantum mechanics, multi-electron systems, crystal structure, semiconductor devices, and logic circuits. All the mathematical complexities treated are alleviated by intuitive physical arguments, and students are encouraged to use their own programming to solve problems. The only prerequisite is some knowledge of calculus, and the second part can serve by itself as an introduction to the physics of electronics for students who have had a standard two-semester introductory physics course. In this second edition, much of the material on electronic devices has been brought up to date, and there is a new chapter on integrated circuits and heterostructures.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1 Physical Quantities.- 1.1 Introduction.- 1.2 Quantities and Units.- 1.3 Powers of 10.- 1.4 Accuracy of Numbers.- Problems.- 2 Vectors.- 2.1 Introduction.- 2.2 Vector Components.- 2.3 Unit Vectors.- 2.4 Dot Product.- 2.5 Cross Product.- Problems.- 3 Uniformly Accelerated Motion.- 3.1 Introduction.- 3.2 Speed and Velocity.- 3.3 Acceleration.- 3.4 Linear Motion.- 3.5 Projectile Motion.- Problems.- 4 Newton’s Laws.- 4.1 Introduction.- 4.2 Newton’s Laws.- 4.3 Mass.- 4.4 Weight.- 4.5 Applications of Newton’s Laws.- 4.6 Friction.- Problems.- 5 Work, Energy, and Power.- 5.1 Introduction.- 5.2 Work.- 5.3 Potential Energy.- 5.4 Work Done by a Variable Force.- 5.5 Kinetic Energy.- 5.6 Energy Conservation.- 5.7 Power.- Problems.- 6 Momentum and Collisions.- 6.1 Introduction.- 6.2 Center of Mass.- 6.3 Motion of the Center of Mass.- 6.4 Momentum and its Conservation.- 6.5 Collisions.- Problems.- 7 Rotational Motion.- 7.1 Introduction.- 7.2 Measurement of Rotation.- 7.3 Rotational Motion.- 7.4 Equations of Rotational Motion.- 7.5 Radial Acceleration.- 7.6 Centripetal Force.- 7.7 Orbital Motion and Gravitation.- Problems.- 8 Rotational Dynamics.- 8.1 Introduction.- 8.2 Moment of Inertia and Torque.- 8.3 Rotational Kinetic Energy.- 8.4 Power.- 8.5 Angular Momentum.- 8.6 Conservation of Angular Momentum.- Problems.- 9 Kinetic Theory of Gases and the Concept of Temperature.- 9.1 Introduction.- 9.2 Molecular Weight.- 9.3 Thermometers.- 9.4 Ideal Gas Law and Absolute Temperature.- 9.5 Kinetic Theory of Gas Pressure.- 9.6 Kinetic Theory of Temperature.- 9.7 Measurement of Heat.- 9.8 Specific Heats of Gases.- 9.9 Work Done by a Gas.- 9.10 First Law of Thermodynamics.- Supplement 9-1: Maxwell-Boltzmann Statistical Distribution.- Problems.- 10 Oscillatory Motion.- 10.1 Introduction.- 10.2 Characterization of Springs.- 10.3 Frequency and Period.- 10.4 Amplitude and Phase Angle.- 10.5 Oscillation of a Spring.- 10.6 Energy of Oscillation.- Problems.- 11 Wave Motion.- 11.1 Introduction.- 11.2 Wavelength, Velocity, Frequency, and Amplitude.- 11.3 Traveling Waves in a String.- 11.4 Energy Transfer of a Wave.- Problems.- 12 Interference of Waves.- 12.1 Introduction.- 12.2 The Superposition Principle.- 12.3 Interference from Two Sources.- 12.4 Double Slit Interference of Light.- 12.5 Single Slit Diffraction.- 12.6 Resolving Power.- 12.7 X-Ray Diffraction by Crystals: Bragg Scattering.- 12.8 Standing Waves.- Problems.- 13 Electrostatics.- 13.1 Introduction.- 13.2 Attraction and Repulsion of Charges.- 13.3 Coulomb’s Law.- 13.4 Charge of an Electron.- 13.5 Superposition Principle.- Problems.- 14 The Electric Field and the Electric Potential.- 14.1 Introduction.- 14.2 The Electric Field.- 14.3 Electrical Potential Energy.- 14.4 Electric Potential.- 14.5 The Electron Volt.- 14.6 Electromotive Force.- 14.7 Capacitance.- Problems.- 15 Electric Current.- 15.1 Introduction.- 15.2 Motion of Charges in an Electric Field.- 15.3 Electric Current.- 15.4 Resistance and Resistivity.- 15.5 Resistances in Series and Parallel.- 15.6 Kirchhoff’s Rules.- 15.7 Ammeters and Voltmeters.- 15.8 Power Dissipation by Resistors.- 15.9 Charging a Capacitor―RC Circuits.- Problems.- 16 Magnetic Fields and Electromagnetic Waves.- 16.1 Introduction.- 16.2 Magnetic Fields.- 16.3 Force on Current-Carrying Wires.- 16.4 Torque on a Current Loop.- 16.5 Magnetic Dipole Moment.- 16.6 Force on a Moving Charge.- 16.7 The Hall Effect.- 16.8 Electromagnetic Waves: The Nature of Light.- Problems.- 17 The Beginning of the Quantum Story.- 17.1 Introduction.- 17.2 Blackbody Radiation.- 17.3 The Photoelectric Effect.- 17.4 Further Evidence for the Photon Theory.- Supplement 17-1: Momentum of the Photon.- Problems.- 18 Atomic Models.- 18.1 Introduction.- 18.2 The Rutherford Model.- 18.3 The Spectrum Of Hydrogen.- 18.4 The Bohr Atom.- 18.5 The Franck-Hertz Experiment.- Problems.- 19 Fundamental Principles of Quantum Mechanics.- 19.1 Introduction.- 19.2 De Broglie’s Hypothesis and Its Experimental Verification.- 19.3 Nature of the Wave.- 19.4 The Uncertainty Principle.- 19.5 Physical Origin of the Uncertainty Principle.- 19.6 Matter Waves and the Uncertainty Principle.- 19.7 Velocity of the Wave Packet: Group Velocity.- 19.8 The Principle of Complementarity.- Problems.- 20 An Introduction to the Methods of Quantum Mechanics.- 20.1 Introduction.- 20.2 The Schrödinger Theory of Quantum Mechanics.- 20.3 Application of the Schrödinger Theory.- Problems.- 21 Quantum Mechanics of Atoms.- 21.1 Introduction.- 21.2 Outline of the Solution of the Schrödinger Equation for the H Atom.- 21.3 Physical Significance of the Results.- 21.4 Space Quantization: The Experiments.- 21.5 The Spin.- 21.6 Some Features of the Atomic Wavefunctions.- 21.7 The Periodic Table.- Problems.- 22 Crystal Structures and Bonding in Solids.- 22.1 Introduction.- 22.2 Crystal Structures.- 22.3 Crystal Bonding.- Problems.- 23 Free Electron Theories of Solids.- 23.1 Introduction.- 23.2 Classical Free Electron (CFE) Model.- 23.3 Quantum-Mechanical Free Electron Model (QMFE).- Supplement 23-1: The Wiedemann-Franz Law.- Supplement 23-2: Fermi-Dirac Statistics.- Problems.- 24 Band Theory of Solids.- 24.1 Introduction.- 24.2 Bloch’s Theorem.- 24.3 The Kronig-Penney Model.- 24.4 Tight-Binding Approximation.- 24.5 Conductors, Insulators, and Semiconductors.- 24.6 Effective Mass.- 24.7 Holes.- Problems.- 25 Semiconductors.- 25.1 Introduction.- 25.2 Intrinsic Semiconductors.- 25.3 Extrinsic or Impurity Semiconductors.- 25.4 Carrier Transport in Semiconductors.- 25.5 Photoconductivity.- 25.6 Compound Semiconductors.- Problems.- 26 Semiconductor Devices.- 26.1 Introduction.- 26.2 Metal-Metal Junction: The Contact Potential.- 26.3 The Semiconductor Diode.- 26.4 The Bipolar Junction Transistor (BJT).- 26.5 Field-Effect Transistors (FET).- 26.6 Optoelectronic Devices.- Problems.- 27 Some Basic Logic Circuits of Computers.- 27.1 Introduction.- 27.2 Rudiments of Boolean Algebra.- 27.3 Electronic Logic Circuits.- 27.4 Semiconductor Gates.- 27.5 NAND and NOR Gates.- 27.6 Other Gates: RTL, TTL, and CMOS.- 27.7 Memory Circuits.- 27.8 Clock Circuits.- Problems.- 28 The Technology of Manufacturing Integrated Circuits.- 28.1 Introduction.- 28.2 Semiconductor Purification: Zone Refining.- 28.3 Single-Crystal Growth.- 28.4 The Processes of IC Production.- 28.5 Electronic Component Fabrication on a Chip.- 28.6 Conclusion.- Problems.- Photo Credits.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 10,00 per la spedizione da Francia a U.S.A.
Destinazione, tempi e costiEUR 3,55 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: La bataille des livres, Pradinas, Francia
Condizione: Très bon. Physics for Computer Science Students: With Emphasis on Atomic and Semiconductor Physics | Garcia, Damask, Schwarz | Springer, 1998, second edition, in-4 cartonnage éditeur, 557 pages. Couverture en bel état. Dos robuste. Intérieur frais. Exemplaire de bibliothèque : petit code barre en pied de 1re de couv., cotation au dos, rares et discrets petits tampons à l'intérieur de l'ouvrage. [NM63+]. Codice articolo DJ-80Y2-LXZG
Quantità: 1 disponibili
Da: La bataille des livres, Pradinas, Francia
Condizione: Bon. Springer, 1998, second edition, in-4 cartonnage éditeur, 557 pages. Couverture en bel état. Dos robuste. Intérieur frais. Exemplaire de bibliothèque : petit code barre en pied de 1re de couv., cotation au dos, rares et discrets petits tampons à l'intérieur de l'ouvrage. [BT4]. Codice articolo 92-K9ZK-M85B
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2716030028640
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 21687670-n
Quantità: 15 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 2nd reprint edition. 579 pages. 10.00x7.99x1.50 inches. In Stock. This item is printed on demand. Codice articolo __1461272173
Quantità: 2 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo S0-9781461272175
Quantità: 15 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 21687670
Quantità: 15 disponibili
Da: Grand Eagle Retail, Fairfield, OH, U.S.A.
Paperback. Condizione: new. Paperback. presentation of the classical and quantum free electron theories and their successes and shortcomings (Chapter 23). In order to explain the large differences in the electrical properties of solids as well as the peculiar properties of semiconductors, the existence of allowed and forbidden energy bands is investigated (Chapter 24). In this chapter, we introduce the concepts of the electron effective mass and of holes. Intrinsic and doped semiconductors, their electron and hole densities, and their electrical properties are discussed in Chapter 25. It is now a rather simple matter for the student to understand the behavior and the characteristics of semiconductor devices: diodes, bipolar transistors, field effect transistors, etc. Semiconductor devices are the subject of Chapter 26. The text concludes with two chapters unique to this physics textbook. In Chapter 27, we show how diodes and transistors can be used to construct the logic circuits (gates) that constitute the fundamental building blocks of the computer. Chapter 28 is a layman'S introduction to some of the techniques used in the fabrication of integrated circuits. The laboratory experiments for the first semester are standard in any physics department, and thus we do not feel that is is necessary to include them in this book. presentation of the classical and quantum free electron theories and their successes and shortcomings (Chapter 23). In order to explain the large differences in the electrical properties of solids as well as the peculiar properties of semiconductors, the existence of allowed and forbidden energy bands is investigated (Chapter 24). Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781461272175
Quantità: 1 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9781461272175
Quantità: 10 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Not only computer scientists, but also electrical engineers, and others interested in electronics are targeted here, and thus the presentation is directed toward understanding how a computer works, while still providing a broad and effective one-year introduction to classical and modern physics. The first half of the book covers many of the topics found in a standard introductory physics course, but with the selection tailored for use in the second half. This second part then covers the fundamentals of quantum mechanics, multi-electron systems, crystal structure, semiconductor devices, and logic circuits. All the mathematical complexities treated are alleviated by intuitive physical arguments, and students are encouraged to use their own programming to solve problems. The only prerequisite is some knowledge of calculus, and the second part can serve by itself as an introduction to the physics of electronics for students who have had a standard two-semester introductory physics course. In this second edition, much of the material on electronic devices has been brought up to date, and there is a new chapter on integrated circuits and heterostructures. 560 pp. Englisch. Codice articolo 9781461272175
Quantità: 2 disponibili