Articoli correlati a Learning Abstract Algebra with ISETL

Learning Abstract Algebra with ISETL - Brossura

 
9781461276104: Learning Abstract Algebra with ISETL

Sinossi

This book is based on the belief that, before students can make sense of any presentation of abstract mathematics, they need to be engaged in mental activities that will establish an experiential base for any future verbal explanations and to have the opportunity to reflect on their activities. This approach is based on extensive theoretical and empirical studies, as well as on the substantial experience of the authors in teaching Abstract Algebra. The main source of activities in this course is computer constructions, specifically, small programs written in the math-like programming language ISETL; the main tool for reflection is work in teams of two to four students, where the activities are discussed and debated. Because of the similarity of ISETL expressions to standard written mathematics, there is very little programming overhead: learning to program is inseparable from learning the mathematics. Each topic is first introduced through computer activities, which are then followed by a text section and exercises. The text section is written in an informal, discursive style, closely relating definitions and proofs to the constructions in the activities. Notions such as cosets and quotient groups become much more meaningful to the students than when they are presented in a lecture.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

1 Mathematical Constructions in ISETL.- 1.1 Using ISETL.- 1.1.1 Activities.- 1.1.2 Getting started.- 1.1.3 Simple objects and operations on them.- 1.1.4 Control statements.- 1.1.5 Exercises.- 1.2 Compound objects and operations on them.- 1.2.1 Activities.- 1.2.2 Tuples.- 1.2.3 Sets.- 1.2.4 Set and tuple formers.- 1.2.5 Set operations.- 1.2.6 Permutations.- 1.2.7 Quantification.- 1.2.8 Miscellaneous ISETL features.- 1.2.9 VISETL.- 1.2.10 Exercises.- 1.3 Functions in ISETL.- 1.3.1 Activities.- 1.3.2 Funcs.- 1.3.3 Alternative syntax for funcs.- 1.3.4 Using funcs to represent situations.- 1.3.5 Funcs for binary operations.- 1.3.6 Funcs to test properties.- 1.3.7 Smaps.- 1.3.8 Procs.- 1.3.9 Exercises.- 2 Groups.- 2.1 Getting acquainted with groups.- 2.1.1 Activities.- 2.1.2 Definition of a group.- 2.1.3 Examples of groups.- Number systems.- Integers mod n.- Symmetric groups.- Symmetries of the square.- Groups of matrices.- 2.1.4 Elementary properties of groups.- 2.1.5 Exercises.- 2.2 The modular groups and the symmetric groups.- 2.2.1 Activities.- 2.2.2 The modular groups Zn.- 2.2.3 The symmetric groups Sn.- Orbits and cycles.- 2.2.4 Exercises.- 2.3 Properties of groups.- 2.3.1 Activities.- 2.3.2 The specific and the general.- 2.3.3 The cancellation law—An illustration of the abstract method.- 2.3.4 How many groups are there?.- Classifying groups of order 4.- 2.3.5 Looking ahead—subgroups.- 2.3.6 Summary of examples and non-examples of groups.- 2.3.7 Exercises.- 3 Subgroups.- 3.1 Definitions and examples.- 3.1.1 Activities.- 3.1.2 Subsets of a group.- Definition of a subgroup.- 3.1.3 Examples of subgroups.- Embedding one group in another.- Conjugates.- Cycle decomposition and conjugates in Sn.- 3.1.4 Exercises.- 3.2 Cyclic groups and their subgroups.- 3.2.1 Activities.- 3.2.2 The subgroup generated by a single element.- 3.2.3 Cyclic groups.- The idea of the proof.- 3.2.4 Generators.- Generators of Sn.- Parity—even and odd permutations.- Determining the parity of a permutation.- 3.2.5 Exercises.- 3.3 Lagrange’s theorem.- 3.3.1 Activities.- 3.3.2 What Lagrange’s theorem is all about.- 3.3.3 Cosets.- 3.3.4 The proof of Lagrange’s theorem.- 3.3.5 Exercises.- 4 The Fundamental Homomorphism Theorem.- 4.1 Quotient groups.- 4.1.1 Activities.- 4.1.2 Normal subgroups.- Multiplying cosets by representatives.- 4.1.3 The quotient group.- 4.1.4 Exercises.- 4.2 Homomorphisms.- 4.2.1 Activities.- 4.2.2 Homomorphisms and kernels.- 4.2.3 Examples.- 4.2.4 Invariants.- 4.2.5 Homomorphisms and normal subgroups.- An interesting example.- 4.2.6 Isomorphisms.- 4.2.7 Identifications.- 4.2.8 Exercises.- 4.3 The homomorphism theorem.- 4.3.1 Activities.- 4.3.2 The canonical homomorphism.- 4.3.3 The fundamental homomorphism theorem.- 4.3.4 Exercises.- 5 Rings.- 5.1 Rings.- 5.1.1 Activities.- 5.1.2 Definition of a ring.- 5.1.3 Examples of rings.- 5.1.4 Rings with additional properties.- Integral domains.- Fields.- 5.1.5 Constructing new rings from old—matrices.- 5.1.6 Constructing new rings from old—polynomials.- 5.1.7 Constructing new rings from old—functions.- 5.1.8 Elementary properties—arithmetic.- 5.1.9 Exercises.- 5.2 Ideals.- 5.2.1 Activities.- 5.2.2 Analogies between groups and rings.- 5.2.3 Subrings.- Definition of subring.- 5.2.4 Examples of subrings.- Subrings of Zn and Z.- Subrings of M(R).- Subrings of polynomial rings.- Subrings of rings of functions.- 5.2.5 Ideals and quotient rings.- Definition of ideal.- Examples of ideals.- 5.2.6 Elementary properties of ideals.- 5.2.7 Elementary properties of quotient rings.- Quotient rings that are integral domains— prime ideals.- Quotient rings that are fields—maximal ideals.- 5.2.8 Exercises.- 5.3 Homomorphisms and isomorphisms.- 5.3.1 Activities.- 5.3.2 Definition of homomorphism and isomorphism.- Group homomorphisms vs. ring homomorphisms.- 5.3.3 Examples of homomorphisms and isomorphisms.- Homomorphisms from Zn to Zk.- Homomorphisms of Z.- Homomorphisms of polynomial rings.- Embeddings—Z, Zn as universal subobjects.- The characteristic of an integral domain and a field.- 5.3.4 Properties of homorphisms.- Preservation.- Ideals and kernels of ring homomorphisms.- 5.3.5 The fundamental homomorphism theorem.- The canonical homomorphism.- The fundamental theorem.- Homomorphic images of Z, Zn.- Identification of quotient rings.- 5.3.6 Exercises.- 6 Factorization in Integral Domains.- 6.1 Divisibility properties of integers and polynomials.- 6.1.1 Activities.- 6.1.2 The integral domains Z, Q[x].- Arithmetic and factoring.- The meaning of unique factorization.- 6.1.3 Arithmetic of polynomials.- Long division of polynomials.- 6.1.4 Division with remainder.- 6.1.5 Greatest Common Divisors and the Euclidean algorithm.- 6.1.6 Exercises.- 6.2 Euclidean domains and unique factorization.- 6.2.1 Activities.- 6.2.2 Gaussian integers.- 6.2.3 Can unique factorization fail?.- 6.2.4 Elementary properties of integral domains.- 6.2.5 Euclidean domains.- Examples of Euclidean domains.- 6.2.6 Unique factorization in Euclidean domains.- 6.2.7 Exercises.- 6.3 The ring of polynomials over a field.- 6.3.1 Unique factorization in F[x].- 6.3.2 Roots of polynomials.- 6.3.3 The evaluation homomorphism.- 6.3.4 Reducible and irreducible polynomials.- Examples.- 6.3.5 Extension fields.- Construction of the complex numbers.- 6.3.6 Splitting fields.- 6.3.7 Exercises.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer
  • Data di pubblicazione2014
  • ISBN 10 1461276101
  • ISBN 13 9781461276104
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero di pagine284
  • Contatto del produttorenon disponibile

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per Learning Abstract Algebra with ISETL

Immagini fornite dal venditore

Ed Dubinsky|Uri Leron
Editore: Springer New York, 2014
ISBN 10: 1461276101 ISBN 13: 9781461276104
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book is based on the belief that, before students can make sense of any presentation of abstract mathematics, they need to be engaged in mental activities that will establish an experiential base for any future verbal explanations and to have the oppor. Codice articolo 4190209

Contatta il venditore

Compra nuovo

EUR 47,23
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Uri Leron
ISBN 10: 1461276101 ISBN 13: 9781461276104
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is based on the belief that, before students can make sense of any presentation of abstract mathematics, they need to be engaged in mental activities that will establish an experiential base for any future verbal explanations and to have the opportunity to reflect on their activities. This approach is based on extensive theoretical and empirical studies, as well as on the substantial experience of the authors in teaching Abstract Algebra. The main source of activities in this course is computer constructions, specifically, small programs written in the math-like programming language ISETL; the main tool for reflection is work in teams of two to four students, where the activities are discussed and debated. Because of the similarity of ISETL expressions to standard written mathematics, there is very little programming overhead: learning to program is inseparable from learning the mathematics. Each topic is first introduced through computer activities, which are then followed by a text section and exercises. The text section is written in an informal, discursive style, closely relating definitions and proofs to the constructions in the activities. Notions such as cosets and quotient groups become much more meaningful to the students than when they are presented in a lecture. 284 pp. Englisch. Codice articolo 9781461276104

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Uri Leron
ISBN 10: 1461276101 ISBN 13: 9781461276104
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is based on the belief that, before students can make sense of any presentation of abstract mathematics, they need to be engaged in mental activities that will establish an experiential base for any future verbal explanations and to have the opportunity to reflect on their activities. This approach is based on extensive theoretical and empirical studies, as well as on the substantial experience of the authors in teaching Abstract Algebra. The main source of activities in this course is computer constructions, specifically, small programs written in the math-like programming language ISETL; the main tool for reflection is work in teams of two to four students, where the activities are discussed and debated. Because of the similarity of ISETL expressions to standard written mathematics, there is very little programming overhead: learning to program is inseparable from learning the mathematics. Each topic is first introduced through computer activities, which are then followed by a text section and exercises. The text section is written in an informal, discursive style, closely relating definitions and proofs to the constructions in the activities. Notions such as cosets and quotient groups become much more meaningful to the students than when they are presented in a lecture.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 284 pp. Englisch. Codice articolo 9781461276104

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Uri Leron
Editore: Springer New York, 2014
ISBN 10: 1461276101 ISBN 13: 9781461276104
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is based on the belief that, before students can make sense of any presentation of abstract mathematics, they need to be engaged in mental activities that will establish an experiential base for any future verbal explanations and to have the opportunity to reflect on their activities. This approach is based on extensive theoretical and empirical studies, as well as on the substantial experience of the authors in teaching Abstract Algebra. The main source of activities in this course is computer constructions, specifically, small programs written in the math-like programming language ISETL; the main tool for reflection is work in teams of two to four students, where the activities are discussed and debated. Because of the similarity of ISETL expressions to standard written mathematics, there is very little programming overhead: learning to program is inseparable from learning the mathematics. Each topic is first introduced through computer activities, which are then followed by a text section and exercises. The text section is written in an informal, discursive style, closely relating definitions and proofs to the constructions in the activities. Notions such as cosets and quotient groups become much more meaningful to the students than when they are presented in a lecture. Codice articolo 9781461276104

Contatta il venditore

Compra nuovo

EUR 56,97
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Dubinsky, Ed; Leron, Uri
Editore: Springer, 2014
ISBN 10: 1461276101 ISBN 13: 9781461276104
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781461276104_new

Contatta il venditore

Compra nuovo

EUR 61,95
Convertire valuta
Spese di spedizione: EUR 10,64
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Ed Dubinsky
ISBN 10: 1461276101 ISBN 13: 9781461276104
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 438. Codice articolo C9781461276104

Contatta il venditore

Compra nuovo

EUR 68,38
Convertire valuta
Spese di spedizione: EUR 9,46
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Dubinsky, Ed/ Leron, Uri
Editore: Springer Verlag, 2014
ISBN 10: 1461276101 ISBN 13: 9781461276104
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 278 pages. 9.30x6.20x0.70 inches. In Stock. Codice articolo x-1461276101

Contatta il venditore

Compra nuovo

EUR 79,48
Convertire valuta
Spese di spedizione: EUR 11,84
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Dubinsky, Ed; Leron, Uri
Editore: Springer, 2014
ISBN 10: 1461276101 ISBN 13: 9781461276104
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar2716030028975

Contatta il venditore

Compra nuovo

EUR 53,55
Convertire valuta
Spese di spedizione: EUR 65,48
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello