Articoli correlati a Maximum-Likelihood Deconvolution: A Journey into Model-Based...

Maximum-Likelihood Deconvolution: A Journey into Model-Based Signal Processing - Brossura

 
9781461279853: Maximum-Likelihood Deconvolution: A Journey into Model-Based Signal Processing

Sinossi

Convolution is the most important operation that describes the behavior of a linear time-invariant dynamical system. Deconvolution is the unraveling of convolution. It is the inverse problem of generating the system's input from knowledge about the system's output and dynamics. Deconvolution requires a careful balancing of bandwidth and signal-to-noise ratio effects. Maximum-likelihood deconvolution (MLD) is a design procedure that handles both effects. It draws upon ideas from Maximum Likelihood, when unknown parameters are random. It leads to linear and nonlinear signal processors that provide high-resolution estimates of a system's input. All aspects of MLD are described, from first principles in this book. The purpose of this volume is to explain MLD as simply as possible. To do this, the entire theory of MLD is presented in terms of a convolutional signal generating model and some relatively simple ideas from optimization theory. Earlier approaches to MLD, which are couched in the language of state-variable models and estimation theory, are unnecessary to understand the essence of MLD. MLD is a model-based signal processing procedure, because it is based on a signal model, namely the convolutional model. The book focuses on three aspects of MLD: (1) specification of a probability model for the system's measured output; (2) determination of an appropriate likelihood function; and (3) maximization of that likelihood function. Many practical algorithms are obtained. Computational aspects of MLD are described in great detail. Extensive simulations are provided, including real data applications.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

1 - Introduction.- 1.1 Introduction.- 1.2 Our Approach.- 1.3 Likelihood Versus Probability.- 1.4 Maximum-Likelihood Method.- 1.5 Comments.- 2 - Convolutional Model.- 2.1 Introduction.- 2.2 The Seismic Convolutional Model.- 2.3 Input.- 2.3.1 Gaussian White Sequences.- 2.3.2 Bernoulli White Sequences.- 2.3.3 Bernoulli-Gaussian White Sequences.- 2.3.4 Bernoulli-Gaussian Plus Backscatter Sequences.- 2.4 Channel Model IR (Seismic Wavelet).- 2.5 Measurement Noise.- 2.6 Other Effects.- 2.7 Mathematical Model.- 2.8 Summary.- 3 - Likelihood.- 3.1 Introduction.- 3.2 Loglikelihood.- 3.3 Likelihood Function.- 3.4 Using Given Information.- 3.5 Message for the Reader.- 3.6 Mathematical Likelihood Functions.- 3.7 Mathematical Loglikelihood Functions.- 3.8 Summary.- 4 - Maximizing Likelihood.- 4.1 Introduction.- 4.2 A Rationale.- 4.3 Block Component Search Algorithms.- 4.4 Mathematical Fact.- 4.5 Separation Principle.- 4.6 Update Random Parameters.- 4.7 Binary Detection.- 4.7.1 Threshold Detector.- 4.7.2 Single Most-Likely Replacement Detector.- 4.7.3 Multiple Most-Likely Replacement Detector.- 4.7.4 Single Spike Shift Detector.- 4.7.5 Other Detectors.- 4.8 Update Wavelet Parameters.- 4.9 Update Statistical Parameters.- 4.10 Message for the Reader.- 4.11 Summary.- 5 - Properties and Performance.- 5.1 Introduction.- 5.2 Minimum-Variance Deconvolution.- 5.3 Detectors.- 5.3.1 Threshold Detector.- 5.3.2 SMLR Detector.- 5.4 A Modified Likelihood Function.- 5.5 An Objective Function.- 5.6 Marquardt-Levenberg Algorithm.- 5.7 Convergence.- 5.8 Entropy Interpretation.- 5.9 Summary.- 6 - Examples.- 6.1 Introduction.- 6.2 Some Real Data Examples.- 6.3 Minimum-Variance Deconvolution.- 6.4 Detection.- 6.5 Block Component Method.- 6.6 Backscatter.- 6.7 Noncausal Channel Models.- 6.8 Summary.- 7 - Mathematical Details for Chapter 4.- 7.1 Introduction.- 7.2 Mathematical Fact.- 7.3 Separation Principle.- 7.4 Minimum-Variance Deconvolution.- 7.5 Threshold Detector.- 7.6 Single Most-Likely Replacement Detector.- 7.7 Single Spike Shift Detector.- 7.8 SSS-SMLR Detector.- 7.9 Marquardt-Levenberg Algorithm.- 7.10 Calculating Gradients.- 7.10.1 Gradients of M with Respect to a and b.- 7.10.2 Gradients of L with Respect to a and b.- 7.10.3 Derivatives of M with Respect to Variances.- 7.10.4 Derivatives of L with Respect to Variances.- 7.11 Calculating Second Derivatives.- 7.11.1 Pseudo-Hessian of M with Respect to a and b.- 7.11.2 Pseudo-Hessian of L with Respect to a and b.- 7.11.3 Second Derivatives of M with Respect to Variances.- 7.11.4 Second Derivatives of L with Respect to Variances.- 7.12 Why vr Cannot be Estimated: Maximization of L or M is an Ill-Posed Problem.- 7.13 An Algorithm for ?.- 8 - Mathematical Details for Chapter 5.- 8.1 Introduction.- 8.2 MVD Filter Properties.- 8.2.1 Derivation of F(?).- 8.2.2 Undershoot Property.- 8.3 Threshold Detector.- 8.4 Modified Likelihood Function.- 8.5 Separation Principle for P and Derivation of N from P.- 8.6 Why vr Cannot be Estimated: Maximization of P or N is not an Ill-Posed Problem.- 8.7 SMLR1 Detector Based on N.- 8.8 Quadratic Convergence of the Newton-Raphson Algorithm.- 8.9 Wavelet Identifiability.- 8.10 Convergence of Adaptive SMLR Detector.- 9 - Computational Considerations.- 9.1 Introduction.- 9.2 Recursive Processing.- 9.2.1 A Recursive Wavelet Model.- 9.2.2 Recursive MVD Algorithm.- 9.2.2.1 Input Estimator.- 9.2.2.2 Backward-Running Filter.- 9.2.2.3 Innovations Process.- 9.2.2.4 Kalman Predictor.- 9.2.3 Detection.- 9.2.4 Likelihood and Objective Functions.- 9.2.5 Gradients of L and M.- 9.2.5.1 Gradients of L.- 9.2.5.2 Gradients of M.- 9.2.6 Pseudo-Hessians of L and M.- 9.2.6.1 Pseudo-Hessian of L.- 9.2.6.2 Pseudo-Hessian of M.- 9.2.7 Computational Requirements for Recursive Processing.- 9.3 Summary.- References.

Product Description

Book by Mendel Jerry M

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer New York
  • Data di pubblicazione1990
  • ISBN 10 1461279852
  • ISBN 13 9781461279853
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero di pagine244

Compra usato

Condizioni: come nuovo
Like New
Visualizza questo articolo

EUR 29,41 per la spedizione da Regno Unito a U.S.A.

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

Risultati della ricerca per Maximum-Likelihood Deconvolution: A Journey into Model-Based...

Foto dell'editore

Mendel, Jerry M.
Editore: Springer, 2011
ISBN 10: 1461279852 ISBN 13: 9781461279853
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar2716030029322

Contatta il venditore

Compra nuovo

EUR 53,81
Convertire valuta
Spese di spedizione: EUR 3,52
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Mendel, Jerry M.
Editore: Springer, 2011
ISBN 10: 1461279852 ISBN 13: 9781461279853
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781461279853_new

Contatta il venditore

Compra nuovo

EUR 61,58
Convertire valuta
Spese di spedizione: EUR 14,09
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Jerry M. Mendel
ISBN 10: 1461279852 ISBN 13: 9781461279853
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 378. Codice articolo C9781461279853

Contatta il venditore

Compra nuovo

EUR 67,97
Convertire valuta
Spese di spedizione: EUR 12,39
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jerry M. Mendel
Editore: Springer New York, 2011
ISBN 10: 1461279852 ISBN 13: 9781461279853
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Convolution is the most important operation that describes the behavior of a linear time-invariant dynamical system. Deconvolution is the unraveling of convolution. It is the inverse problem of generating the system's input from knowledge about the system's output and dynamics. Deconvolution requires a careful balancing of bandwidth and signal-to-noise ratio effects. Maximum-likelihood deconvolution (MLD) is a design procedure that handles both effects. It draws upon ideas from Maximum Likelihood, when unknown parameters are random. It leads to linear and nonlinear signal processors that provide high-resolution estimates of a system's input. All aspects of MLD are described, from first principles in this book. The purpose of this volume is to explain MLD as simply as possible. To do this, the entire theory of MLD is presented in terms of a convolutional signal generating model and some relatively simple ideas from optimization theory. Earlier approaches to MLD, which are couched in the language of state-variable models and estimation theory, are unnecessary to understand the essence of MLD. MLD is a model-based signal processing procedure, because it is based on a signal model, namely the convolutional model. The book focuses on three aspects of MLD: (1) specification of a probability model for the system's measured output; (2) determination of an appropriate likelihood function; and (3) maximization of that likelihood function. Many practical algorithms are obtained. Computational aspects of MLD are described in great detail. Extensive simulations are provided, including real data applications. Codice articolo 9781461279853

Contatta il venditore

Compra nuovo

EUR 58,39
Convertire valuta
Spese di spedizione: EUR 29,87
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Jerry M. Mendel
Editore: Springer New York, 2012
ISBN 10: 1461279852 ISBN 13: 9781461279853
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. reprint edition. 241 pages. 9.25x6.10x0.60 inches. In Stock. Codice articolo x-1461279852

Contatta il venditore

Compra nuovo

EUR 79,32
Convertire valuta
Spese di spedizione: EUR 11,76
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jerry M. Mendel
Editore: Springer New York, 2011
ISBN 10: 1461279852 ISBN 13: 9781461279853
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Convolution is the most important operation that describes the behavior of a linear time-invariant dynamical system. Deconvolution is the unraveling of convolution. It is the inverse problem of generating the system s input from knowledge about the system s. Codice articolo 4190576

Contatta il venditore

Compra nuovo

EUR 48,37
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Mendel, Jerry M.
Editore: Springer, 2011
ISBN 10: 1461279852 ISBN 13: 9781461279853
Antico o usato Paperback

Da: Mispah books, Redhill, SURRE, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA77314612798526

Contatta il venditore

Compra usato

EUR 100,58
Convertire valuta
Spese di spedizione: EUR 29,41
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jerry M. Mendel
ISBN 10: 1461279852 ISBN 13: 9781461279853
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Convolution is the most important operation that describes the behavior of a linear time-invariant dynamical system. Deconvolution is the unraveling of convolution. It is the inverse problem of generating the system's input from knowledge about the system's output and dynamics. Deconvolution requires a careful balancing of bandwidth and signal-to-noise ratio effects. Maximum-likelihood deconvolution (MLD) is a design procedure that handles both effects. It draws upon ideas from Maximum Likelihood, when unknown parameters are random. It leads to linear and nonlinear signal processors that provide high-resolution estimates of a system's input. All aspects of MLD are described, from first principles in this book. The purpose of this volume is to explain MLD as simply as possible. To do this, the entire theory of MLD is presented in terms of a convolutional signal generating model and some relatively simple ideas from optimization theory. Earlier approaches to MLD, which are couched in the language of state-variable models and estimation theory, are unnecessary to understand the essence of MLD. MLD is a model-based signal processing procedure, because it is based on a signal model, namely the convolutional model. The book focuses on three aspects of MLD: (1) specification of a probability model for the system's measured output; (2) determination of an appropriate likelihood function; and (3) maximization of that likelihood function. Many practical algorithms are obtained. Computational aspects of MLD are described in great detail. Extensive simulations are provided, including real data applications. 244 pp. Englisch. Codice articolo 9781461279853

Contatta il venditore

Compra nuovo

EUR 112,34
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello