Articoli correlati a Modern Geometry — Methods and Applications:...

Modern Geometry — Methods and Applications: Part I: The Geometry of Surfaces, Transformation Groups, and Fields: 93 - Brossura

 
9781461287568: Modern Geometry — Methods and Applications: Part I: The Geometry of Surfaces, Transformation Groups, and Fields: 93

Sinossi

This is the first volume of a three-volume introduction to modern geometry which emphasizes applications to other areas of mathematics and theoretical physics. Topics covered include tensors and their differential calculus, the calculus of variations in one and several dimensions, and geometric field theory. This new edition offers substantial revisions, and the material is written in concrete language with terminology acceptable to physicists.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

1 Geometry in Regions of a Space. Basic Concepts.- §1. Co-ordinate systems.- 1.1. Cartesian co-ordinates in a space.- 1.2. Co-ordinate changes.- §2. Euclidean space.- 2.1. Curves in Euclidean space.- 2.2. Quadratic forms and vectors.- §3. Riemannian and pseudo-Riemannian spaces.- 3.1. Riemannian metrics.- 3.2. The Minkowski metric.- §4. The simplest groups of transformations of Euclidean space.- 4.1. Groups of transformations of a region.- 4.2. Transformations of the plane.- 4.3. The isometries of 3-dimensional Euclidean space.- 4.4. Further examples of transformation groups.- 4.5. Exercises.- §5. The Serret—Frenet formulae.- 5.1. Curvature of curves in the Euclidean plane.- 5.2. Curves in Euclidean 3-space. Curvature and torsion.- 5.3. Orthogonal transformations depending on a parameter.- 5.4. Exercises.- §6. Pseudo-Euclidean spaces.- 6.1. The simplest concepts of the special theory of relativity.- 6.2. Lorentz transformations.- 6.3. Exercises.- 2 The Theory of Surfaces.- §7. Geometry on a surface in space.- 7.1. Co-ordinates on a surface.- 7.2. Tangent planes.- 7.3. The metric on a surface in Euclidean space.- 7.4. Surface area.- 7.5. Exercises.- §8. The second fundamental form.- 8.1. Curvature of curves on a surface in Euclidean space.- 8.2. Invariants of a pair of quadratic forms.- 8.3. Properties of the second fundamental form.- 8.4. Exercises.- §9. The metric on the sphere.- §10. Space-like surfaces in pseudo-Euclidean space.- 10.1. The pseudo-sphere.- 10.2. Curvature of space-like curves in $$ \mathbb{R}_1^3 $$.- §11. The language of complex numbers in geometry.- 11.1. Complex and real co-ordinates.- 11.2. The Hermitian scalar product.- 11.3. Examples of complex transformation groups.- §12. Analytic functions.- 12.1. Complex notation for the element of length, and for the differential of a function.- 12.2. Complex co-ordinate changes.- 12.3. Surfaces in complex space.- §13. The conformal form of the metric on a surface.- 13.1. Isothermal co-ordinates. Gaussian curvature in terms of conformal co-ordinates.- 13.2. Conformal form of the metrics on the sphere and the Lobachevskian plane.- 13.3. Surfaces of constant curvature.- 13.4. Exercises.- §14. Transformation groups as surfaces in N-dimensional space.- 14.1. Co-ordinates in a neighbourhood of the identity.- 14.2. The exponential function with matrix argument.- 14.3. The quaternions.- 14.4. Exercises.- §15. Conformal transformations of Euclidean and pseudo-Euclidean spaces of several dimensions.- 3 Tensors: The Algebraic Theory.- §16. Examples of tensors.- §17. The general definition of a tensor.- 17.1. The transformation rule for the components of a tensor of arbitrary rank.- 17.2. Algebraic operations on tensors.- 17.3. Exercises.- §18. Tensors of type (0, k).- 18.1. Differential notation for tensors with lower indices only.- 18.2. Skew-symmetric tensors of type (0, k).- 18.3. The exterior product of differential forms. The exterior algebra.- 18.4. Skew-symmetric tensors of type (k, 0) (polyvectors). Integrals with respect to anti-commuting variables.- 18.5. Exercises.- §19. Tensors in Riemannian and pseudo-Riemannian spaces.- 19.1. Raising and lowering indices.- 19.2. The eigenvalues of a quadratic form.- 19.3. The operator ?.- 19.4. Tensors in Euclidean space.- 19.5. Exercises.- §20. The crystallographic groups and the finite subgroups of the rotation group of Euclidean 3-space. Examples of invariant tensors.- §21. Rank 2 tensors in pseudo-Euclidean space, and their eigenvalues.- 21.1. Skew-symmetric tensors. The invariants of an electromagnetic field.- 21.2. Symmetric tensors and their eigenvalues. The energy-momentum tensor of an electromagnetic field.- §22. The behaviour of tensors under mappings.- 22.1. The general operation of restriction of tensors with lower indices.- 22.2. Mappings of tangent spaces.- §23. Vector fields.- 23.1. One-parameter groups of diffeomorphisms.- 23.2. The exponential function of a vector field.- 23.3. The Lie derivative.- 23.4. Exercises.- §24. Lie algebras.- 24.1. Lie algebras and vector fields.- 24.2. The fundamental matrix Lie algebras.- 24.3. Linear vector fields.- 24.4. Left-invariant fields defined on transformation groups.- 24.5. Invariant metrics on a transformation group.- 24.6. The classification of the 3-dimensional Lie algebras.- 24.7. The Lie algebras of the conformal groups.- 24.8. Exercises.- 4 The Differential Calculus of Tensors.- §25. The differential calculus of skew-symmetric tensors.- 25.1. The gradient of a skew-symmetric tensor.- 25.2. The exterior derivative of a form.- 25.3. Exercises.- §26. Skew-symmetric tensors and the theory of integration.- 26.1. Integration of differential forms.- 26.2. Examples of integrals of differential forms.- 26.3. The general Stokes formula. Examples.- 26.4. Proof of the general Stokes formula for the cube.- 26.5. Exercises.- §27. Differential forms on complex spaces.- 27.1. The operators d? and d?.- 27.2. Kählerian metrics. The curvature form.- §28. Covariant differentiation.- 28.1. Euclidean connexions.- 28.2. Covariant differentiation of tensors of arbitrary rank.- §29. Covariant differentiation and the metric.- 29.1. Parallel transport of vector fields.- 29.2. Geodesics.- 29.3. Connexions compatible with the metric.- 29.4. Connexions compatible with a complex structure (Hermitian metric).- 29.5. Exercises.- §30. The curvature tensor.- 30.1. The general curvature tensor.- 30.2. The symmetries of the curvature tensor. The curvature tensor defined by the metric.- 30.3. Examples: The curvature tensor in spaces of dimensions 2 and 3; the curvature tensor of transformation groups.- 30.4. The Peterson—Codazzi equations. Surfaces of constant negative curvature, and the “sine—Gordon” equation.- 30.5. Exercises.- 5 The Elements of the Calculus of Variations.- §31. One-dimensional variational problems.- 31.1. The Euler—Lagrange equations.- 31.2. Basic examples of functional.- §32. Conservation laws.- 32.1. Groups of transformations preserving a given variational problem.- 32.2. Examples. Applications of the conservation laws.- §33. Hamiltonian formalism.- 33.1. Legendre’s transformation.- 33.2. Moving co-ordinate frames.- 33.3. The principles of Maupertuis and Fermat.- 33.4. Exercises.- §34. The geometrical theory of phase space.- 34.1. Gradient systems.- 34.2. The Poisson bracket.- 34.3. Canonical transformations.- 34.4. Exercises.- §35. Lagrange surfaces.- 35.1. Bundles of trajectories and the Hamilton—Jacobi equation.- 35.2. Hamiltonians which are first-order homogeneous with respect to the momentum.- §36. The second variation for the equation of the geodesics.- 36.1. The formula for the second variation.- 36.2. Conjugate points and the minimality condition.- 6 The Calculus of Variations in Several Dimensions. Fields and Their Geometric Invariants.- §37. The simplest higher-dimensional variational problems.- 37.1. The Euler—Lagrange equations.- 37.2. The energy-momentum tensor.- 37.3. The equations of an electromagnetic field.- 37.4. The equations of a gravitational field.- 37.5. Soap films.- 37.6. Equilibrium equation for a thin plate.- 37.7. Exercises.- §38. Examples of Lagrangians.- §39. The simplest concepts of the general theory of relativity.- §40. The spinor representations of the groups SO(3) and O(3, 1). Dirac’s equation and its properties.- 40.1. Automorphisms of matrix algebras.- 40.2. The spinor representation of the group SO(3).- 40.3. The spinor representation of the Lorentz group.- 40.4. Dirac’s equation.- 40.5. Dirac’s equation in an electromagnetic field. The operation of charge conjugation.- §41. Covariant differentiation of fields with arbitrary symmetry.- 41.1. Gauge transformations. Gauge-invariant Lagrangians.- 41.2. The curvature form.- 41.3. Basic examples.- §42. Examples of gauge-invariant functionals. Maxwell’s equations and the Yang—Mills equation. Functionals with identically zero variational derivative (characteristic classes).

Product Description

Book by Dubrovin BA Fomenko AT Novikov SP

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer
  • Data di pubblicazione2011
  • ISBN 10 1461287561
  • ISBN 13 9781461287568
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero edizione2
  • Numero di pagine492

EUR 14,08 per la spedizione da Regno Unito a U.S.A.

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9780387976631: Modern Geometry-Methods and Applications, Part I: The Geometry of Surfaces, Transformation Groups, and Fields: 93

Edizione in evidenza

ISBN 10:  0387976639 ISBN 13:  9780387976631
Casa editrice: Springer Verlag, 1991
Rilegato

Risultati della ricerca per Modern Geometry — Methods and Applications:...

Foto dell'editore

Dubrovin, B.A.; Fomenko, A.T.; Novikov, S.P.
Editore: Springer, 2011
ISBN 10: 1461287561 ISBN 13: 9781461287568
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In English. Codice articolo ria9781461287568_new

Contatta il venditore

Compra nuovo

EUR 65,28
Convertire valuta
Spese di spedizione: EUR 14,08
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Dubrovin, B.A.; Fomenko, A.T.; Novikov, S.P.
Editore: Springer, 2011
ISBN 10: 1461287561 ISBN 13: 9781461287568
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar2716030029993

Contatta il venditore

Compra nuovo

EUR 78,14
Convertire valuta
Spese di spedizione: EUR 3,53
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

B. A. Dubrovin
ISBN 10: 1461287561 ISBN 13: 9781461287568
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This is the first volume of a three-volume introduction to modern geometry which emphasizes applications to other areas of mathematics and theoretical physics. Topics covered include tensors and their differential calculus, the calculus of variations in one and several dimensions, and geometric field theory. This new edition offers substantial revisions, and the material is written in concrete language with terminology acceptable to physicists. 492 pp. Englisch. Codice articolo 9781461287568

Contatta il venditore

Compra nuovo

EUR 64,15
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Dubrovin, B.A.; Fomenko, A.T.; Novikov, S.P.
Editore: Springer, 2011
ISBN 10: 1461287561 ISBN 13: 9781461287568
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781461287568

Contatta il venditore

Compra nuovo

EUR 88,32
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

B. A. Dubrovin
ISBN 10: 1461287561 ISBN 13: 9781461287568
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 714. Codice articolo C9781461287568

Contatta il venditore

Compra nuovo

EUR 74,44
Convertire valuta
Spese di spedizione: EUR 16,32
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

B. A. Dubrovin
ISBN 10: 1461287561 ISBN 13: 9781461287568
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This is the first volume of a three-volume introduction to modern geometry, with emphasis on applications to other areas of mathematics and theoretical physics. Topics covered include tensors and their differential calculus, the calculus of variations in one and several dimensions, and geometric field theory. This material is explained in as simple and concrete a language as possible, in a terminology acceptable to physicists. The text for the second edition has been substantially revised. Codice articolo 9781461287568

Contatta il venditore

Compra nuovo

EUR 67,86
Convertire valuta
Spese di spedizione: EUR 31,69
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

B.A. Dubrovin|A.T. Fomenko|S.P. Novikov
Editore: Springer New York, 2011
ISBN 10: 1461287561 ISBN 13: 9781461287568
Nuovo Kartoniert / Broschiert
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This is the first volume of a three-volume introduction to modern geometry, with emphasis on applications to other areas of mathematics and theoretical physics. Topics covered include tensors and their differential calculus, the calculus of variations in on. Codice articolo 4191315

Contatta il venditore

Compra nuovo

EUR 55,76
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

B. a. Dubrovin
Editore: Springer New York, 2011
ISBN 10: 1461287561 ISBN 13: 9781461287568
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 2nd edition. 468 pages. 9.00x6.00x1.00 inches. In Stock. Codice articolo x-1461287561

Contatta il venditore

Compra nuovo

EUR 118,11
Convertire valuta
Spese di spedizione: EUR 11,75
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello