The book is addressed to both the theoretical and applied statistician. It can be used as an undergraduate text.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
I. Density Smoothing.- 1. The Histogram.- 1.0 Introduction.- 1.1 Definitions of the Histogram.- The Histogram as a Frequency Counting Curve.- The Histogram as a Maximum Likelihood Estimate.- Varying the Binwidth.- 1.2 Statistics of the Histogram.- 1.3 The Histogram in S.- 1.4 Smoothing the Histogram by WARPing.- WARPing Algorithm.- WARPing in S.- Exercises.- 2. Kernel Density Estimation.- 2.0 Introduction.- 2.1 Definition of the Kernel Estimate.- Varying the Kernel.- Varying the Bandwidth.- 2.2 Kernel Density Estimation in S.- Direct Algorithm.- Implementation in S.- 2.3 Statistics of the Kernel Density.- Speed of Convergence.- Confidence Intervals and Confidence Bands.- 2.4 Approximating Kernel Estimates by WARPing.- 2.5 Comparison of Computational Costs.- 2.6 Comparison of Smoothers Between Laboratories.- Keeping the Kernel Bias the Same.- Keeping the Support of the Kernel the Same.- Canonical Kernels.- 2.7 Optimizing the Kernel Density.- 2.8 Kernels of Higher Order.- 2.9 Multivariate Kernel Density Estimation.- Same Bandwidth in Each Component.- Nonequal Bandwidths in Each Component.- A Matrix of Bandwidths.- Exercises.- 3. Further Density Estimators.- 3.0 Introduction.- 3.1 Orthogonal Series Estimators.- 3.2 Maximum Penalized Likelihood Estimators.- Exercises.- 4. Bandwidth Selection in Practice.- 4.0 Introduction.- 4.1 Kernel Estimation Using Reference Distributions.- 4.2 Plug-In Methods.- 4.3 Cross-Validation.- 4.3.1 Maximum Likelihood Cross-Validation.- Direct Algorithm.- 4.3.2 Least-Squares Cross-Validation.- Direct Algorithm.- 4.3.3 Biased Cross-Validation.- Algorithm.- 4.4 Cross-Validation for WARPing Density Estimation.- 4.4.1 Maximum Likelihood Cross-Validation.- 4.4.2 Least-Squares Cross-Validation.- Algorithm.- Implementation in S.- 4.4.3 Biased Cross-Validation.- Algorithm.- Implementation in S.- Exercises.- II. Regression Smoothing.- 5. Nonparametric Regression.- 5.0 Introduction.- 5.1 Kernel Regression Smoothing.- 5.1.1 The Nadaraya-Watson Estimator.- Direct Algorithm.- Implementation in S.- 5.1.2 Statistics of the Nadaraya-Watson Estimator.- 5.1.3 Confidence Intervals.- 5.1.4 Fixed Design Model.- 5.1.5 The WARPing Approximation.- Basic Algorithm.- Implementation in S.- 5.2 k-Nearest Neighbor (k-NN).- 5.2.1 Definition of the k-NN Estimate.- 5.2.2 Statistics of the k-NN Estimate.- 5.3 Spline Smoothing.- Exercises.- 6. Bandwidth Selection.- 6.0 Introduction.- 6.1 Estimates of the Averaged Squared Error.- 6.1.0 Introduction.- 6.1.1 Penalizing Functions.- 6.1.2 Cross-Validation.- Direct Algorithm.- 6.2 Bandwidth Selection with WARPing.- Penalizing Functions.- Cross-Validation.- Basic Algorithm.- Implementation in S.- Applications.- Exercises.- 7. Simultaneous Error Bars.- 7.1 Golden Section Bootstrap.- Algorithm for Golden Section Bootstrapping.- Implementation in S.- 7.2 Construction of Confidence Intervals.- Exercises.- Tables.- Solutions.- List of Used S Commands.- Symbols and Notation.- References.
Book by Hrdle Wolfgang
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The author has attempted to present a book that provides a non-technical introduction into the area of non-parametric density and regression function estimation. The application of these methods is discussed in terms of the S computing environment. Smoothin. Codice articolo 4191326
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The author has attempted to present a book that provides a non-technical introduction into the area of non-parametric density and regression function estimation. The application of these methods is discussed in terms of the S computing environment. Smoothing in high dimensions faces the problem of data sparseness. A principal feature of smoothing, the averaging of data points in a prescribed neighborhood, is not really practicable in dimensions greater than three if we have just one hundred data points. Additive models provide a way out of this dilemma; but, for their interactiveness and recursiveness, they require highly effective algorithms. For this purpose, the method of WARPing (Weighted Averaging using Rounded Points) is described in great detail.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 276 pp. Englisch. Codice articolo 9781461287681
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781461287681_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The author has attempted to present a book that provides a non-technical introduction into the area of non-parametric density and regression function estimation. The application of these methods is discussed in terms of the S computing environment. Smoothing in high dimensions faces the problem of data sparseness. A principal feature of smoothing, the averaging of data points in a prescribed neighborhood, is not really practicable in dimensions greater than three if we have just one hundred data points. Additive models provide a way out of this dilemma; but, for their interactiveness and recursiveness, they require highly effective algorithms. For this purpose, the method of WARPing (Weighted Averaging using Rounded Points) is described in great detail. Codice articolo 9781461287681
Quantità: 1 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 421. Codice articolo C9781461287681
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The author has attempted to present a book that provides a non-technical introduction into the area of non-parametric density and regression function estimation. The application of these methods is discussed in terms of the S computing environment. Smoothing in high dimensions faces the problem of data sparseness. A principal feature of smoothing, the averaging of data points in a prescribed neighborhood, is not really practicable in dimensions greater than three if we have just one hundred data points. Additive models provide a way out of this dilemma; but, for their interactiveness and recursiveness, they require highly effective algorithms. For this purpose, the method of WARPing (Weighted Averaging using Rounded Points) is described in great detail. 276 pp. Englisch. Codice articolo 9781461287681
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 276. Codice articolo 2658577518
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 276 87 Figures, 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 51015089
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. reprint edition. 261 pages. 9.00x6.00x0.50 inches. In Stock. Codice articolo x-1461287685
Quantità: 2 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 276. Codice articolo 1858577508
Quantità: 4 disponibili