Articoli correlati a Learning with Nested Generalized Exemplars: 100

Learning with Nested Generalized Exemplars: 100 - Brossura

 
9781461288305: Learning with Nested Generalized Exemplars: 100

Sinossi

Machine Learning is one of the oldest and most intriguing areas of Ar­ tificial Intelligence. From the moment that computer visionaries first began to conceive the potential for general-purpose symbolic computa­ tion, the concept of a machine that could learn by itself has been an ever present goal. Today, although there have been many implemented com­ puter programs that can be said to learn, we are still far from achieving the lofty visions of self-organizing automata that spring to mind when we think of machine learning. We have established some base camps and scaled some of the foothills of this epic intellectual adventure, but we are still far from the lofty peaks that the imagination conjures up. Nevertheless, a solid foundation of theory and technique has begun to develop around a variety of specialized learning tasks. Such tasks in­ clude discovery of optimal or effective parameter settings for controlling processes, automatic acquisition or refinement of rules for controlling behavior in rule-driven systems, and automatic classification and di­ agnosis of items on the basis of their features. Contributions include algorithms for optimal parameter estimation, feedback and adaptation algorithms, strategies for credit/blame assignment, techniques for rule and category acquisition, theoretical results dealing with learnability of various classes by formal automata, and empirical investigations of the abilities of many different learning algorithms in a diversity of applica­ tion areas.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

1 Introduction.- 1.1 Background.- 1.2 NGE and other exemplar-based theories.- 1.3 Previous models.- 1.3.1 Concept learning.- 1.3.2 Explanation-based generalization.- 1.4 Comparisons of NGE and other models.- 1.4.1 Knowledge representation schemes.- 1.4.2 Underlying learning strategies.- 1.4.3 External information.- 1.4.4 Domain independent learning.- 1.4.5 Generalizations with exceptions.- 1.4.6 One-shot learning.- 1.4.7 Many variables, many concepts.- 1.4.8 Binary, discrete, and continuous variables.- 1.4.9 Disjunctive concepts.- 1.4.10 Inconsistent data.- 1.4.11 Psychological credibility.- 1.4.12 Problem domain characteristics.- 1.5 Types of generalization.- 1.5.1 Implicit generalization.- 1.5.2 Explicit generalization.- 2 The NGE learning algorithm.- 2.1 Initialization.- 2.2 Get the next example.- 2.3 Make a prediction.- 2.3.1 The matching process.- 2.4 Feedback.- 2.4.1 Correct prediction.- 2.4.2 Incorrect prediction.- 2.5 Summary of algorithm.- 2.6 Partitioning feature space.- 2.6.1 Simplest case.- 2.6.2 Two rectangles in two dimensions.- 2.7 Assumptions.- 2.8 Greedy variant of the algorithm.- 3 Review.- 3.1 Concept learning in psychology.- 3.1.1 Spectator behavior.- 3.1.2 Participant behavior.- 3.2 Prototype theory and exemplar theory.- 3.3 Each as a multiple prototype model.- 3.4 Machine learning in AI.- 3.4.1 Learning by discovery.- 3.4.2 Natural language learning.- 3.4.3 Earlier work on nested generalizations.- 3.4.4 Other exemplar-based learning models.- 3.5 Connectionism.- 3.5.1 Simulations.- 3.6 Cluster analysis.- 3.6.1 Similarity measures.- 3.6.2 Hierarchical clustering techniques.- 3.6.3 Problems with cluster analysis.- 3.7 Conclusion.- 4 Experimental results with NGE.- 4.1 Breast cancer data.- 4.1.1 Success rates and comparisons.- 4.1.2 Variability.- 4.1.3 Memory size.- 4.1.4 Other tests.- 4.2 Iris classification.- 4.2.1 Success rates.- 4.2.2 Memory size and variability.- 4.2.3 Learning rate.- 4.2.4 Comparisons.- 4.2.5 Memory size and structure.- 4.3 Echocardiogram tests.- 4.3.1 Description of the domain.- 4.3.2 Results and discussion.- 4.3.3 Structure of memory model.- 4.3.4 Greedy Each algorithm results.- 4.4 Discrete event simulation.- 4.4.1 Tests with four variables.- 4.4.2 Tests with five variables.- 4.4.3 Tests with seven variables.- 4.4.4 Summary of simulation.- 5 Conclusion.- 5.1 Weight factors.- 5.2 Synthesis with explanation-based learning.- 5.3 Psychological plausibility.- 5.4 Complexity results.- 5.5 Future experimental work.- A Data sets.- A.1 Breast cancer data.- A.2 Iris data.- A.3 Echocardiogram data.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Like New
Visualizza questo articolo

EUR 28,84 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9780792391104: Learning With Nested Generalized Exemplars: 100

Edizione in evidenza

ISBN 10:  0792391101 ISBN 13:  9780792391104
Casa editrice: Kluwer Academic Pub, 1990
Rilegato

Risultati della ricerca per Learning with Nested Generalized Exemplars: 100

Immagini fornite dal venditore

Steven L. Salzberg
Editore: Springer US, 2011
ISBN 10: 1461288304 ISBN 13: 9781461288305
Nuovo Brossura

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 4191384

Contatta il venditore

Compra nuovo

EUR 92,27
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Steven L. Salzberg
ISBN 10: 1461288304 ISBN 13: 9781461288305
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Machine Learning is one of the oldest and most intriguing areas of Ar tificial Intelligence. From the moment that computer visionaries first began to conceive the potential for general-purpose symbolic computa tion, the concept of a machine that could learn by itself has been an ever present goal. Today, although there have been many implemented com puter programs that can be said to learn, we are still far from achieving the lofty visions of self-organizing automata that spring to mind when we think of machine learning. We have established some base camps and scaled some of the foothills of this epic intellectual adventure, but we are still far from the lofty peaks that the imagination conjures up. Nevertheless, a solid foundation of theory and technique has begun to develop around a variety of specialized learning tasks. Such tasks in clude discovery of optimal or effective parameter settings for controlling processes, automatic acquisition or refinement of rules for controlling behavior in rule-driven systems, and automatic classification and di agnosis of items on the basis of their features. Contributions include algorithms for optimal parameter estimation, feedback and adaptation algorithms, strategies for credit/blame assignment, techniques for rule and category acquisition, theoretical results dealing with learnability of various classes by formal automata, and empirical investigations of the abilities of many different learning algorithms in a diversity of applica tion areas.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 184 pp. Englisch. Codice articolo 9781461288305

Contatta il venditore

Compra nuovo

EUR 106,99
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Salzberg, Steven L. L.
Editore: Springer, 2011
ISBN 10: 1461288304 ISBN 13: 9781461288305
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781461288305_new

Contatta il venditore

Compra nuovo

EUR 115,98
Convertire valuta
Spese di spedizione: EUR 10,37
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Steven L. Salzberg
Editore: Springer US, 2011
ISBN 10: 1461288304 ISBN 13: 9781461288305
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Machine Learning is one of the oldest and most intriguing areas of Ar tificial Intelligence. From the moment that computer visionaries first began to conceive the potential for general-purpose symbolic computa tion, the concept of a machine that could learn by itself has been an ever present goal. Today, although there have been many implemented com puter programs that can be said to learn, we are still far from achieving the lofty visions of self-organizing automata that spring to mind when we think of machine learning. We have established some base camps and scaled some of the foothills of this epic intellectual adventure, but we are still far from the lofty peaks that the imagination conjures up. Nevertheless, a solid foundation of theory and technique has begun to develop around a variety of specialized learning tasks. Such tasks in clude discovery of optimal or effective parameter settings for controlling processes, automatic acquisition or refinement of rules for controlling behavior in rule-driven systems, and automatic classification and di agnosis of items on the basis of their features. Contributions include algorithms for optimal parameter estimation, feedback and adaptation algorithms, strategies for credit/blame assignment, techniques for rule and category acquisition, theoretical results dealing with learnability of various classes by formal automata, and empirical investigations of the abilities of many different learning algorithms in a diversity of applica tion areas. Codice articolo 9781461288305

Contatta il venditore

Compra nuovo

EUR 112,77
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Steven L. Salzberg
ISBN 10: 1461288304 ISBN 13: 9781461288305
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 316. Codice articolo C9781461288305

Contatta il venditore

Compra nuovo

EUR 136,23
Convertire valuta
Spese di spedizione: EUR 8,10
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Steven L. Salzberg
Editore: Springer US Sep 2011, 2011
ISBN 10: 1461288304 ISBN 13: 9781461288305
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Machine Learning is one of the oldest and most intriguing areas of Ar tificial Intelligence. From the moment that computer visionaries first began to conceive the potential for general-purpose symbolic computa tion, the concept of a machine that could learn by itself has been an ever present goal. Today, although there have been many implemented com puter programs that can be said to learn, we are still far from achieving the lofty visions of self-organizing automata that spring to mind when we think of machine learning. We have established some base camps and scaled some of the foothills of this epic intellectual adventure, but we are still far from the lofty peaks that the imagination conjures up. Nevertheless, a solid foundation of theory and technique has begun to develop around a variety of specialized learning tasks. Such tasks in clude discovery of optimal or effective parameter settings for controlling processes, automatic acquisition or refinement of rules for controlling behavior in rule-driven systems, and automatic classification and di agnosis of items on the basis of their features. Contributions include algorithms for optimal parameter estimation, feedback and adaptation algorithms, strategies for credit/blame assignment, techniques for rule and category acquisition, theoretical results dealing with learnability of various classes by formal automata, and empirical investigations of the abilities of many different learning algorithms in a diversity of applica tion areas. 184 pp. Englisch. Codice articolo 9781461288305

Contatta il venditore

Compra nuovo

EUR 135,89
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Steven L. Salzberg
Editore: Springer, 2011
ISBN 10: 1461288304 ISBN 13: 9781461288305
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 184. Codice articolo 2697768042

Contatta il venditore

Compra nuovo

EUR 143,36
Convertire valuta
Spese di spedizione: EUR 7,68
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Salzberg Steven L.
Editore: Springer, 2011
ISBN 10: 1461288304 ISBN 13: 9781461288305
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand pp. 184 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 94662069

Contatta il venditore

Compra nuovo

EUR 149,95
Convertire valuta
Spese di spedizione: EUR 10,21
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Salzberg Steven L.
Editore: Springer, 2011
ISBN 10: 1461288304 ISBN 13: 9781461288305
Nuovo Brossura
Print on Demand

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. PRINT ON DEMAND pp. 184. Codice articolo 1897768032

Contatta il venditore

Compra nuovo

EUR 154,90
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Salzberg, Steven L.
Editore: Springer, 2011
ISBN 10: 1461288304 ISBN 13: 9781461288305
Antico o usato Paperback

Da: Mispah books, Redhill, SURRE, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA80014612883046

Contatta il venditore

Compra usato

EUR 167,51
Convertire valuta
Spese di spedizione: EUR 28,84
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello