Articoli correlati a Geometric Topology in Dimensions 2 and 3: 47

Geometric Topology in Dimensions 2 and 3: 47 - Brossura

 
9781461299080: Geometric Topology in Dimensions 2 and 3: 47

Sinossi

Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the "Schonflies theorem" for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known "horned sphere" of Alexander [A ] appeared soon thereafter.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

0 Introduction.- 1 Connectivity.- 2 Separation properties of polygons in R2.- 3 The Schönflies theorem for polygons in R2.- 4 The Jordan curve theorem.- 5 Piecewise linear homeomorphisms.- 6 PL approximations of homeomorphisms.- 7 Abstract complexes and PL complexes.- 8 The triangulation theorem for 2-manifolds.- 9 The Schönflies theorem.- 10 Tame imbedding in R2.- 11 Isotopies.- 12 Homeomorphisms between Cantor sets.- 13 Totally disconnected compact sets in R2.- 14 The fundamental group (summary).- 15 The group of (the complement of) a link.- 16 Computations of fundamental groups.- 17 The PL Schönflies theorem in R3.- 18 The Antoine set.- 19 A wild arc with a simply connected complement.- 20 A wild 2-sphere with a simply connected complement.- 21 The Euler characteristic.- 22 The classification of compact connected 2-manifolds.- 23 Triangulated 3-manifolds.- 24 Covering spaces.- 25 The Stallings proof of the loop theorem of Papakyriakopoulos.- 26 Bicollar neighborhoods; an extension of the loop theorem.- 27 The Dehn lemma.- 28 Polygons in the boundary of a combinatorial solid torus.- 29 Limits on the loop theorem: Stallings’s example.- 30 Polyhedral interpolation theorems.- 31 Canonical configurations.- 32 Handle decompositions of tubes.- 33 PLH approximations of homeomorphisms, for regular neighborhoods of linear graphs in R3.- 34 PLH approximations of homeomorphisms, for polyhedral 3-cells.- 35 The Triangulation theorem.- 36 The Haupt?ermutung; tame imbedding.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Like New
Visualizza questo articolo

EUR 28,90 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9780387902203: Geometric Topology in Dimensions 2 and 3

Edizione in evidenza

ISBN 10:  0387902201 ISBN 13:  9780387902203
Casa editrice: Springer, 1977
Rilegato

Risultati della ricerca per Geometric Topology in Dimensions 2 and 3: 47

Immagini fornite dal venditore

E.E. Moise
Editore: Springer New York, 2013
ISBN 10: 146129908X ISBN 13: 9781461299080
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given . Codice articolo 4192316

Contatta il venditore

Compra nuovo

EUR 74,71
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

E. E. Moise
ISBN 10: 146129908X ISBN 13: 9781461299080
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the 'Schonflies theorem' for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known 'horned sphere' of Alexander [A ] appeared soon thereafter. 276 pp. Englisch. Codice articolo 9781461299080

Contatta il venditore

Compra nuovo

EUR 85,59
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

E. E. Moise
ISBN 10: 146129908X ISBN 13: 9781461299080
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the 'Schonflies theorem' for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known 'horned sphere' of Alexander [A ] appeared soon thereafter.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 276 pp. Englisch. Codice articolo 9781461299080

Contatta il venditore

Compra nuovo

EUR 85,59
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Moise, E.E.
Editore: Springer, 2013
ISBN 10: 146129908X ISBN 13: 9781461299080
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781461299080_new

Contatta il venditore

Compra nuovo

EUR 91,47
Convertire valuta
Spese di spedizione: EUR 10,39
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Moise, E.E.
Editore: Springer, 2013
ISBN 10: 146129908X ISBN 13: 9781461299080
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781461299080

Contatta il venditore

Compra nuovo

EUR 96,31
Convertire valuta
Spese di spedizione: EUR 7,79
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

E. E. Moise
ISBN 10: 146129908X ISBN 13: 9781461299080
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the 'Schonflies theorem' for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known 'horned sphere' of Alexander [A ] appeared soon thereafter. Codice articolo 9781461299080

Contatta il venditore

Compra nuovo

EUR 91,02
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Moise, E. E.
Editore: Springer 2013-06, 2013
ISBN 10: 146129908X ISBN 13: 9781461299080
Nuovo PF

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

PF. Condizione: New. Codice articolo 6666-IUK-9781461299080

Contatta il venditore

Compra nuovo

EUR 88,02
Convertire valuta
Spese di spedizione: EUR 23,11
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Foto dell'editore

E.E. Moise
ISBN 10: 146129908X ISBN 13: 9781461299080
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 457. Codice articolo C9781461299080

Contatta il venditore

Compra nuovo

EUR 104,09
Convertire valuta
Spese di spedizione: EUR 9,42
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

E. E. Moise
Editore: Springer, 2013
ISBN 10: 146129908X ISBN 13: 9781461299080
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 276. Codice articolo 2698199958

Contatta il venditore

Compra nuovo

EUR 120,11
Convertire valuta
Spese di spedizione: EUR 7,79
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Moise E. E.
Editore: Springer, 2013
ISBN 10: 146129908X ISBN 13: 9781461299080
Nuovo Brossura
Print on Demand

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. PRINT ON DEMAND pp. 276. Codice articolo 1898199964

Contatta il venditore

Compra nuovo

EUR 127,95
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Vedi altre 4 copie di questo libro

Vedi tutti i risultati per questo libro