A lithium-drifted germanium detector is a semiconductor de vice which operates at liquid nitrogen temperature, and is used for detection of nuclear radiation, mostly gamma ray. The detection occurs when the y-ray undergoes an interaction in the intrinsic or I region of the semiconductor. The interaction results in the pro duction of charge carriers which are swept out by an electric field. This is accomplished by reverse biasing the detector with approxi mately 100 v/mm of intrinsic material. The total amount of charge swept out is proportional to the energy dissipated in the intrinsic region. This may include the total energy of the photon, but gen erally somewhat less. The Ge(Li) device is a semiconductor p-n device with a very large intrinsic region between the positive carrier region and the negative carrier region (P-I-N). The fabrication of this device consists of three major steps: the diffusion of the lithium into the p-type germanium to give an n-type surface region, the drifting process to obtain the intrinsic region as deeply as possible, and the surface preparation. There are numerous procedures for the various steps as well as criteria for material selection and the preparation of the materials.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Bibliography Lithium-Drifted Germanium Detectors.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2716030031419
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781461346005_new
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9781461346005
Quantità: 10 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A lithium-drifted germanium detector is a semiconductor de vice which operates at liquid nitrogen temperature, and is used for detection of nuclear radiation, mostly gamma ray. The detection occurs when the y-ray undergoes an interaction in the intrinsic or I region of the semiconductor. The interaction results in the pro duction of charge carriers which are swept out by an electric field. This is accomplished by reverse biasing the detector with approxi mately 100 v/mm of intrinsic material. The total amount of charge swept out is proportional to the energy dissipated in the intrinsic region. This may include the total energy of the photon, but gen erally somewhat less. The Ge(Li) device is a semiconductor p-n device with a very large intrinsic region between the positive carrier region and the negative carrier region (P-I-N). The fabrication of this device consists of three major steps: the diffusion of the lithium into the p-type germanium to give an n-type surface region, the drifting process to obtain the intrinsic region as deeply as possible, and the surface preparation. There are numerous procedures for the various steps as well as criteria for material selection and the preparation of the materials. 228 pp. Englisch. Codice articolo 9781461346005
Quantità: 2 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 401. Codice articolo C9781461346005
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Codice articolo 4192877
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -A lithium-drifted germanium detector is a semiconductor de vice which operates at liquid nitrogen temperature, and is used for detection of nuclear radiation, mostly gamma ray. The detection occurs when the y-ray undergoes an interaction in the intrinsic or I region of the semiconductor. The interaction results in the pro duction of charge carriers which are swept out by an electric field. This is accomplished by reverse biasing the detector with approxi mately 100 v/mm of intrinsic material. The total amount of charge swept out is proportional to the energy dissipated in the intrinsic region. This may include the total energy of the photon, but gen erally somewhat less. The Ge(Li) device is a semiconductor p-n device with a very large intrinsic region between the positive carrier region and the negative carrier region (P-I-N). The fabrication of this device consists of three major steps: the diffusion of the lithium into the p-type germanium to give an n-type surface region, the drifting process to obtain the intrinsic region as deeply as possible, and the surface preparation. There are numerous procedures for the various steps as well as criteria for material selection and the preparation of the materials.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 228 pp. Englisch. Codice articolo 9781461346005
Quantità: 1 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Lithium-Drifted Germanium Detectors: Their Fabrication and Use | An Annotated Bibliography | I. C. Brownridge | Taschenbuch | xiv | Englisch | 2011 | Springer | EAN 9781461346005 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Codice articolo 105628934
Quantità: 5 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - A lithium-drifted germanium detector is a semiconductor de vice which operates at liquid nitrogen temperature, and is used for detection of nuclear radiation, mostly gamma ray. The detection occurs when the y-ray undergoes an interaction in the intrinsic or I region of the semiconductor. The interaction results in the pro duction of charge carriers which are swept out by an electric field. This is accomplished by reverse biasing the detector with approxi mately 100 v/mm of intrinsic material. The total amount of charge swept out is proportional to the energy dissipated in the intrinsic region. This may include the total energy of the photon, but gen erally somewhat less. The Ge(Li) device is a semiconductor p-n device with a very large intrinsic region between the positive carrier region and the negative carrier region (P-I-N). The fabrication of this device consists of three major steps: the diffusion of the lithium into the p-type germanium to give an n-type surface region, the drifting process to obtain the intrinsic region as deeply as possible, and the surface preparation. There are numerous procedures for the various steps as well as criteria for material selection and the preparation of the materials. Codice articolo 9781461346005
Quantità: 1 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA79714613460026
Quantità: 1 disponibili