Articoli correlati a Codes on Algebraic Curves

Codes on Algebraic Curves - Brossura

 
9781461371670: Codes on Algebraic Curves

Sinossi

This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

I. Error-Correcting Codes.- 1 Codes and Their Parameters.- 1.1. Introduction.- 1.2. Finite Fields.- 1.3. Linear Codes.- 1.4. Spectrum and Duality.- Exercises.- 2 Bounds on Codes.- 2.1. Upper Bounds.- 2.2. The Linear Programming Bound.- 2.3. Lower Bounds.- Exercises.- 3 Examples and Constructions.- 3.1. Codes of Genus Zero.- 3.2. Some Families of Codes.- 3.3. Constructing Codes from other Codes.- Exercises.- II. Algebraic Curves and Varieties.- 4 Algebraic Curves.- 4.1. Algebraic Varieties.- 4.2. Non-Singular Curves.- 4.3. Divisors on Algebraic Curves.- 4.4. The Riemann—Roch Theorem.- 4.5. Hurwitz and Plücker Genus Formulas.- 4.6. Special Divisors.- Exercises.- 5 Curves over a Finite Field.- 5.1. Rational Points and Divisors.- 5.2. The Zeta-Function of a Curve.- 5.3. L-Functions of Artin.- 5.4. Algebraic Function Fields.- Exercises.- 6 Counting Points on Curves over Finite Fields.- 6.1. The Number of Rational Points on a Curve.- 6.2. Character Sums.- 6.3. Asymptotics.- Exercises.- III. Elliptic and Modular Curves.- 7 Elliptic Curves.- 7.1. The Group Law.- 7.2. The j-Invariant.- 7.3. Isogenies.- 7.4. Elliptic Curves over Finite Fields.- 7.5. Elliptic Functions.- Exercises.- 8 Classical Modular Curves.- 8.1. Congruence Subgroups.- 8.2. The Curves X(N), X0(N), and X1(N).- 8.3. Hecke Operators.- 8.4. The Petersson Inner Product.- Exercises.- 9 Reductions of Modular Curves.- 9.1. Reductions and Moduli Spaces.- 9.2. The Igusa Theorem.- 9.3. The Eichler-Shimura Congruence Relation.- 9.4. The Eichler-Selberg Trace Formula.- Exercises.- IV. Geometric Goppa Codes.- 10 Constructions and Properties.- 10.1. L-Construction.- 10.2. ?-Construction.- 10.3. Parameters.- 10.4. Duality and Spectra.- Exercises.- 11 Examples.- 11.1. Codes of Small Genera.- 11.2. Elliptic and Hermitian Codes.- 11.3. Codes on Fiber Products.- 11.4. Codes on Classical Modular Curves.- 11.5. Codes on Artin—Schreier Coverings.- 11.6. Codes on Trace-Norm Curves.- Exercises.- 12 Decoding Geometric Goppa Codes.- 12.1. The Decoding Problem.- 12.2. The Basic and Modified Algorithms.- 12.3. An Improvement of the Modified Algorithm.- 12.4. Majority Voting for Unknown Syndromes.- 12.5. Faster Decoding.- Exercises.- 13 Bounds.- 13.1. Asymptotic Bounds.- 13.2. Constructive Bounds.- 13.3. Other Bounds.- Exercises.- List of Notations.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: molto buono
It's a well-cared-for item that...
Visualizza questo articolo

EUR 63,92 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9780306461446: Codes on Algebraic Curves

Edizione in evidenza

ISBN 10:  0306461447 ISBN 13:  9780306461446
Casa editrice: Plenum Pub Corp, 1999
Rilegato

Risultati della ricerca per Codes on Algebraic Curves

Immagini fornite dal venditore

Serguei A. Stepanov
Editore: Springer US, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). . Codice articolo 4195314

Contatta il venditore

Compra nuovo

EUR 136,16
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Stepanov, Serguei A. A.
Editore: Springer, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781461371670_new

Contatta il venditore

Compra nuovo

EUR 158,70
Convertire valuta
Spese di spedizione: EUR 10,33
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Stepanov, Serguei A.
Editore: Springer, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 20178931-n

Contatta il venditore

Compra nuovo

EUR 153,77
Convertire valuta
Spese di spedizione: EUR 17,04
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 15 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Serguei A. Stepanov
Editore: Springer US Okt 2012, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A. 368 pp. Englisch. Codice articolo 9781461371670

Contatta il venditore

Compra nuovo

EUR 160,49
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Stepanov, Serguei A. A.
Editore: Springer, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Nuovo Brossura

Da: Best Price, Torrance, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. SUPER FAST SHIPPING. Codice articolo 9781461371670

Contatta il venditore

Compra nuovo

EUR 148,22
Convertire valuta
Spese di spedizione: EUR 25,55
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Serguei A. Stepanov
ISBN 10: 1461371678 ISBN 13: 9781461371670
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 368 pp. Englisch. Codice articolo 9781461371670

Contatta il venditore

Compra nuovo

EUR 160,49
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Serguei A. Stepanov
Editore: Springer US, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A. Codice articolo 9781461371670

Contatta il venditore

Compra nuovo

EUR 164,49
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Stepanov, Serguei A.
ISBN 10: 1461371678 ISBN 13: 9781461371670
Antico o usato Paperback

Da: BooksRun, Philadelphia, PA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Very Good. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Softcover reprint of the original 1st ed. 1999. Codice articolo 1461371678-8-1

Contatta il venditore

Compra usato

EUR 119,51
Convertire valuta
Spese di spedizione: EUR 63,92
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Stepanov, Serguei A.
Editore: Springer, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Nuovo Brossura

Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 2012. Paperback. . . . . . Codice articolo V9781461371670

Contatta il venditore

Compra nuovo

EUR 195,17
Convertire valuta
Spese di spedizione: EUR 2,00
Da: Irlanda a: Italia
Destinazione, tempi e costi

Quantità: 15 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Stepanov, Serguei A.
Editore: Springer, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 20178931

Contatta il venditore

Compra usato

EUR 183,86
Convertire valuta
Spese di spedizione: EUR 17,04
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 15 disponibili

Aggiungi al carrello

Vedi altre 8 copie di questo libro

Vedi tutti i risultati per questo libro