Preface. I: Introduction and Outline. 1. The Normal Basis Theorem. 2. A Strengthening of the Normal Basis Theorem. 3. Preliminaries on Finite Fields. 4. A Reduction Theorem. 5. Particular Extensions of Prime Power Degree. 6. An Outline. II: Module Structures in Finite Fields. 7. On Modules over Principal Ideal Domains. 8. Cyclic Galois Extensions. 9. Algorithms for Determining Free Elements. 10. Cyclotomic Polynomials. III: Simultaneous Module Structures. 11. Subgroups Respecting Various Module Structures. 12. Decompositions Respecting Various Module Structures. 13. Extensions of Prime Power Degree (1). IV: The Existence of Completely Free Elements. 14. The Two-Field Problem. 15. Admissibility. 16. Extendability. 17. Extensions of Prime Power Degree (2). V: A Decomposition Theory. 18. Suitable Polynomials. 19. Decompositions of Completely Free Elements. 20. Regular Extensions. 21. Enumeration. VI: Explicit Constructions. 22. Strongly Regular Extensions. 23. Exceptional Cases. 24. Constructions in Regular Extensions. 25. Product Constructions. 26. Iterative Constructions. 27. Polynomial Constructions. References. List of Symbols. Index.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
(nessuna copia disponibile)
Cerca: Inserisci un desiderataNon riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!
Inserisci un desiderata