Introduction to Multivariate Analysis: Linear and Nonlinear Modeling - Rilegato

Konishi, Sadanori

 
9781466567283: Introduction to Multivariate Analysis: Linear and Nonlinear Modeling

Sinossi

Select the Optimal Model for Interpreting Multivariate Data

Introduction to Multivariate Analysis: Linear and Nonlinear Modeling shows how multivariate analysis is widely used for extracting useful information and patterns from multivariate data and for understanding the structure of random phenomena. Along with the basic concepts of various procedures in traditional multivariate analysis, the book covers nonlinear techniques for clarifying phenomena behind observed multivariate data. It primarily focuses on regression modeling, classification and discrimination, dimension reduction, and clustering.

The text thoroughly explains the concepts and derivations of the AIC, BIC, and related criteria and includes a wide range of practical examples of model selection and evaluation criteria. To estimate and evaluate models with a large number of predictor variables, the author presents regularization methods, including the L1 norm regularization that gives simultaneous model estimation and variable selection.

For advanced undergraduate and graduate students in statistical science, this text provides a systematic description of both traditional and newer techniques in multivariate analysis and machine learning. It also introduces linear and nonlinear statistical modeling for researchers and practitioners in industrial and systems engineering, information science, life science, and other areas.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Sadanori Konishi

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9780367576134: Introduction to Multivariate Analysis: Linear and Nonlinear Modeling

Edizione in evidenza

ISBN 10:  0367576139 ISBN 13:  9780367576134
Casa editrice: Chapman and Hall/CRC, 2020
Brossura