Given $n$ general points $p_1, p_2, \ldots , p_n \in \mathbb P^r$, it is natural to ask when there exists a curve $C \subset \mathbb P^r$, of degree $d$ and genus $g$, passing through $p_1, p_2, \ldots , p_n$. In this paper, the authors give a complete answer to this question for curves $C$ with nonspecial hyperplane section. This result is a consequence of our main theorem, which states that the normal bundle $N_C$ of a general nonspecial curve of degree $d$ and genus $g$ in $\mathbb P^r$ (with $d \geq g + r$) has the property of interpolation (i.e. that for a general effective divisor $D$ of any degree on $C$, either $H^0(N_C(-D)) = 0$ or $H^1(N_C(-D)) = 0$), with exactly three exceptions.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 7,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 12,00 per la spedizione da Polonia a Italia
Destinazione, tempi e costiDa: Antiquariat Bookfarm, Löbnitz, Germania
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-03389 9781470434892 Sprache: Englisch Gewicht in Gramm: 150. Codice articolo 2489296
Quantitą: 1 disponibili
Da: Leopolis, Kraków, Polonia
Soft cover. Condizione: New. 8vo (25 cm), V, 105 pp. Laminated wrappers. Codice articolo 008519
Quantitą: 1 disponibili
Da: BooksRun, Philadelphia, PA, U.S.A.
Paperback. Condizione: Very Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Codice articolo 147043489X-8-1
Quantitą: 1 disponibili