Fix $d\geq 2$, and $s\in (d-1,d)$. The authors characterize the non-negative locally finite non-atomic Borel measures $\mu $ in $\mathbb R^d$ for which the associated $s$-Riesz transform is bounded in $L^2(\mu )$ in terms of the Wolff energy. This extends the range of $s$ in which the Mateu-Prat-Verdera characterization of measures with bounded $s$-Riesz transform is known. As an application, the authors give a metric characterization of the removable sets for locally Lipschitz continuous solutions of the fractional Laplacian operator $(-\Delta )^\alpha /2$, $\alpha \in (1,2)$, in terms of a well-known capacity from non-linear potential theory. This result contrasts sharply with removability results for Lipschitz harmonic functions.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 7,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 2,00 per la spedizione da Irlanda a Italia
Destinazione, tempi e costiDa: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condizione: New. 2020. Paperback. . . . . . Codice articolo V9781470442132
Quantità: 1 disponibili
Da: Rarewaves.com UK, London, Regno Unito
Paperback. Condizione: New. Fix $d\geq 2$, and $s\in (d-1,d)$. The authors characterize the non-negative locally finite non-atomic Borel measures $\mu $ in $\mathbb R^d$ for which the associated $s$-Riesz transform is bounded in $L^2(\mu )$ in terms of the Wolff energy. This extends the range of $s$ in which the Mateu-Prat-Verdera characterization of measures with bounded $s$-Riesz transform is known. As an application, the authors give a metric characterization of the removable sets for locally Lipschitz continuous solutions of the fractional Laplacian operator $(-\Delta )^\alpha /2$, $\alpha \in (1,2)$, in terms of a well-known capacity from non-linear potential theory. This result contrasts sharply with removability results for Lipschitz harmonic functions. Codice articolo LU-9781470442132
Quantità: 3 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo FW-9781470442132
Quantità: 5 disponibili
Da: Antiquariat Bookfarm, Löbnitz, Germania
Softcover. V, 97 Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-05657 9781470442132 Sprache: Englisch Gewicht in Gramm: 550. Codice articolo 2491916
Quantità: 1 disponibili
Da: Rarewaves.com USA, London, LONDO, Regno Unito
Paperback. Condizione: New. Fix $d\geq 2$, and $s\in (d-1,d)$. The authors characterize the non-negative locally finite non-atomic Borel measures $\mu $ in $\mathbb R^d$ for which the associated $s$-Riesz transform is bounded in $L^2(\mu )$ in terms of the Wolff energy. This extends the range of $s$ in which the Mateu-Prat-Verdera characterization of measures with bounded $s$-Riesz transform is known. As an application, the authors give a metric characterization of the removable sets for locally Lipschitz continuous solutions of the fractional Laplacian operator $(-\Delta )^\alpha /2$, $\alpha \in (1,2)$, in terms of a well-known capacity from non-linear potential theory. This result contrasts sharply with removability results for Lipschitz harmonic functions. Codice articolo LU-9781470442132
Quantità: 3 disponibili
Da: Kennys Bookstore, Olney, MD, U.S.A.
Condizione: New. 2020. Paperback. . . . . . Books ship from the US and Ireland. Codice articolo V9781470442132
Quantità: 1 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 97 pages. 9.96x6.93x0.35 inches. In Stock. Codice articolo __1470442132
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Einband - flex.(Paperback). Condizione: New. The authors characterize the non-negative locally finite non-atomic Borel measures $mu $ in $mathbb R^d$ for which the associated $s$-Riesz transform is bounded in $L^2(mu )$ in terms of the Wolff energy. This extends the range of $s$ in which the Mateu-Pra. Codice articolo 595975243
Quantità: 5 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 41498713-n
Quantità: 6 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 41498713-n
Quantità: 2 disponibili