Learn how to integrate full-stack open source big data architecture and to choose the correct technology—Scala/Spark, Mesos, Akka, Cassandra, and Kafka—in every layer.
Big data architecture is becoming a requirement for many different enterprises. So far, however, the focus has largely been on collecting, aggregating, and crunching large data sets in a timely manner. In many cases now, organizations need more than one paradigm to perform efficient analyses.
Big Data SMACK explains each of the full-stack technologies and, more importantly, how to best integrate them. It provides detailed coverage of the practical benefits of these technologies and incorporates real-world examples in every situation. This book focuses on the problems and scenarios solved by the architecture, as well as the solutions provided by every technology. It covers the six main concepts of big data architecture and how integrate, replace, and reinforce every layer:
What You Will Learn:
Who This Book Is For:
Developers, data architects, and data scientists looking to integrate the most successful big data open stack architecture and to choose the correct technology in every layerLe informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Raúl Estrada is the co-founder of Treu Technologies, an enterprise for Social Data Marketing and BigData research. He is an Enterprise Architect with more than 15 years of experience in cluster management and Enterprise Software. Prior to founding Treu Technologies, Estrada worked as an Enterprise Architect in Application Servers & evangelist for Oracle Inc. He loves functional languages like Elixir and Scala, and also has a Master of Computer Science degree.
Isaac Ruiz has been a Java programmer since 2001, and a consultant and architect since 2003. He has participated in projects of different areas and varied scopes (education, communications, retail, and others). Ruiz specializes in systems integration and has participated in projects mainly related to the financial sector. He is a supporter of free software. Ruiz likes to experiment with new technologies (frameworks, languages, methods).
Integrate full-stack open-source fast data pipeline architecture and choose the correct technology Spark, Mesos, Akka, Cassandra, and Kafka (SMACK) in every layer. Fast data is becoming a requirement for many enterprises. So far, however, the focus has largely been on collecting, aggregating, and crunching large data sets in a timely manner. In many cases organizations need more than one paradigm to perform efficient analyses.
Big Data SMACK explains each technology and, more importantly, how to integrate them. It provides detailed coverage of the practical benefits of these technologies and incorporates real-world examples. The book focuses on the problems and scenarios solved by the architecture, as well as the solutions provided by each technology. This book covers the five main concepts of data pipeline architecture and how to integrate, replace, and reinforce every layer:
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 8,35 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.
Paperback. Condizione: As New. No Jacket. Pages are clean and are not marred by notes or folds of any kind. ~ ThriftBooks: Read More, Spend Less 1.3. Codice articolo G1484221745I2N00
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The first book presenting the SMACK stackA practical guide teaching how to incorporate big dataCovers the full stack of big data architecture, discussing the practical benefits of each technology. Codice articolo 123474193
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Learn how to integrate full-stack open source big data architecture and to choose the correct technology-Scala/Spark, Mesos, Akka, Cassandra, and Kafka-in every layer.Big data architecture is becoming a requirement for many different enterprises. So far, however, the focus has largely been on collecting, aggregating, and crunching large data sets in a timely manner. In many cases now, organizations need more than one paradigm to perform efficient analyses.Big Data SMACK explains each of the full-stack technologies and, more importantly, how to best integrate them. It provides detailed coverage of the practical benefits of these technologies and incorporates real-world examples in every situation. This book focuses on the problems and scenarios solved by the architecture, as well as the solutions provided by every technology. It covers the six main concepts of big data architecture and how integrate, replace, and reinforce every layer:The language: ScalaThe engine: Spark (SQL, MLib, Streaming, GraphX)The container: Mesos, DockerThe view: AkkaThe storage: CassandraThe message broker: KafkaWhat You Will Learn:Make big data architecture without using complex Greek letter architecturesBuild a cheap but effective cluster infrastructureMake queries, reports, and graphs that business demandsManage and exploit unstructured and No-SQL data sourcesUse tools to monitor the performance of your architectureIntegrate all technologies and decide which ones replace and which ones reinforceWho This Book Is For:Developers, data architects, and data scientists looking to integrate the most successful big data open stack architecture and to choose the correct technology in every layer 292 pp. Englisch. Codice articolo 9781484221747
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Learn how to integrate full-stack open source big data architecture and to choose the correct technology¿Scala/Spark, Mesos, Akka, Cassandra, and Kafkäin every layer.Big data architecture is becoming a requirement for many different enterprises. So far, however, the focus has largely been on collecting, aggregating, and crunching large data sets in a timely manner. In many cases now, organizations need more than one paradigm to perform efficient analyses.Big Data SMACK explains each of the full-stack technologies and, more importantly, how to best integrate them. It provides detailed coverage of the practical benefits of these technologies and incorporates real-world examples in every situation. This book focuses on the problems and scenarios solved by the architecture, as well as the solutions provided by every technology. It covers the six main concepts of big data architecture and how integrate, replace, and reinforce every layer:The language: ScalaThe engine: Spark (SQL, MLib, Streaming, GraphX)The container: Mesos, DockerThe view: AkkaThe storage: CassandraThe message broker: KafkaWhat You Will Learn:Make big data architecture without using complex Greek letter architecturesBuild a cheap but effective cluster infrastructureMake queries, reports, and graphs that business demandsManage and exploit unstructured and No-SQL data sourcesUse tools to monitor the performance of your architectureIntegrate all technologies and decide which ones replace and which ones reinforceWho This Book Is For:Developers, data architects, and data scientists looking to integrate the most successful big data open stack architecture and to choose the correct technology in every layerAPress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 292 pp. Englisch. Codice articolo 9781484221747
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Learn how to integrate full-stack open source big data architecture and to choose the correct technology-Scala/Spark, Mesos, Akka, Cassandra, and Kafka-in every layer.Big data architecture is becoming a requirement for many different enterprises. So far, however, the focus has largely been on collecting, aggregating, and crunching large data sets in a timely manner. In many cases now, organizations need more than one paradigm to perform efficient analyses.Big Data SMACK explains each of the full-stack technologies and, more importantly, how to best integrate them. It provides detailed coverage of the practical benefits of these technologies and incorporates real-world examples in every situation. This book focuses on the problems and scenarios solved by the architecture, as well as the solutions provided by every technology. It covers the six main concepts of big data architecture and how integrate, replace, and reinforce every layer:The language: ScalaThe engine: Spark (SQL, MLib, Streaming, GraphX)The container: Mesos, DockerThe view: AkkaThe storage: CassandraThe message broker: KafkaWhat You Will Learn:Make big data architecture without using complex Greek letter architecturesBuild a cheap but effective cluster infrastructureMake queries, reports, and graphs that business demandsManage and exploit unstructured and No-SQL data sourcesUse tools to monitor the performance of your architectureIntegrate all technologies and decide which ones replace and which ones reinforceWho This Book Is For:Developers, data architects, and data scientists looking to integrate the most successful big data open stack architecture and to choose the correct technology in every layer. Codice articolo 9781484221747
Quantità: 1 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 584. Codice articolo C9781484221747
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9781484221747
Quantità: 10 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 264. Codice articolo 26374909994
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 264. Codice articolo 372184053
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 264. Codice articolo 18374909984
Quantità: 4 disponibili