Articoli correlati a Python Machine Learning Case Studies: Five Case Studies...

Python Machine Learning Case Studies: Five Case Studies for the Data Scientist - Brossura

 
9781484228241: Python Machine Learning Case Studies: Five Case Studies for the Data Scientist

Al momento non sono disponibili copie per questo codice ISBN.

Sinossi

Chapter 1: Statistics and Probability
Chapter Goal: Introduction and hands on approach to central limit theorem, distributions, confidence intervals, statistical tests, ROC curves, plots, probabilities, permutations and combinations
No of pages: 70-80
Sub -Topics
1. Exploratory Data analysis
2. Probability Distributions
3. Concept of Permutations and Combinations
4. Statistical tests
5. Applications in the industry
6. Case study

Chapter 2: Regression
Chapter Goal: Introduction and hands on approach to the concept of regression, linear regression models, non linear regression models.
No of pages: 50-60
Sub - Topics
1. Concept of Regression
2. Linear regression
3. Polynomial order regression
4. Statistical tests
5. Applications in the industry
6. Case study
&
amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;
Chapter 3: Time series models
Chapter Goal: Introduction and hands on approach to concepts of trends, cycles, seasonal variations, anomaly detection, exponential smoothing, rolling moving averages, ARIMA, ARMA, over fitting.
No of pages: 60-70
Sub - Topics:
1. Concept of trends, cycles, and seasonal variations
2. Time series decomposition
3. ARIMA, and ARMA models
4. Concept of over fitting
5. Statistical tests
6. Applications in the industry
7. Case study

Chapter 4: Classification and Clustering
Chapter Goal: Introduction and hands on approach to supervised, semi supervised and unsupervised models. Emphasis on Logistic regression, k-means, Support Vector Machines, Neural networks
No of pages: 80-90
Sub - Topics:
1. Concept of Classification and clustering
2. Deep
neur3. Support Vector Machines
4. Concept of Gradient descent
5. Statistical tests
6. Applications in the industry
7. Case study

Chapter 5: Ensemble methods
Chapter Goal: Introduction and hands on approach to Bagging, and Gradient Boosting
No of pages: 50-60
Sub - Topics:
1. Concept of ensemble methods
2. Concept of Bagging
3. Concept of Gradient Boosting
4. Statistical tests
5. Applications in the industry
6. Case study

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

(nessuna copia disponibile)

Cerca:



Inserisci un desiderata

Non riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!

Inserisci un desiderata

Altre edizioni note dello stesso titolo

9781484228227: Python Machine Learning Case Studies: Five Case Studies for the Data Scientist

Edizione in evidenza

ISBN 10:  1484228227 ISBN 13:  9781484228227
Casa editrice: Apress, 2017
Brossura