Articoli correlati a Pro Machine Learning Algorithms: A Hands-On Approach...

Pro Machine Learning Algorithms: A Hands-On Approach to Implementing Algorithms in Python and R - Brossura

 
9781484235652: Pro Machine Learning Algorithms: A Hands-On Approach to Implementing Algorithms in Python and R

Al momento non sono disponibili copie per questo codice ISBN.

Sinossi

Chapter 1:  Basic statistics
Chapter Goal: Build the statistical foundation for machine learning 
No of pages    : 20
Sub -Topics
1.      Introduction to various statistical functions
1.      Introduction to distributions
2.      Hypothesis testing
3.      Case classes

Chapter 2: Linear regression 
Chapter Goal: Help the reader master linear regression with the theory & practical concepts
No of pages: 25
Sub - Topics   
1.      Introduction to regression  
2.      Least squared error
3.      Implementing linear regression in Excel & R & Python
4.      Measuring error

Chapter 3: Logistic regression
Chapter Goal: Help the reader master logistic regression with the theory & practical concepts 
No of pages: 25
Sub - Topics:  
1.      Introduction to logistic regression  
2.      Cross entropy error
3.      Implementing logistic regression in Excel & R & Python
4.      Area under the curve calculation

Chapter 4:  Decision tree
Chapter Goal: Help the reader master decision tree with the theory & practical concepts 
No of pages: 40
Sub - Topics: 
1.      Introduction to decision tree  
2.      Information gain
3.      Decision tree for classification & regression
4.      Implementing decision tree in Excel & R & Python
5.      Measuring error
Chapter 5: Random forest
Chapter Goal: Help the reader master random forests with the theory & practical concepts 
No of pages: 15
Sub - Topics: 
1.      Moving from decision tree to random forests
2.      Implement random forest in R & Python using decision tree functionalities
 
Chapter 6: GBM
Chapter Goal: Help the reader master GBM with the theory & practical concepts 
No of pages: 20
Sub - Topics: 
 
1.      Understanding gradient boosting process
2.      Difference between gradient boost & adaboost
3.      Implement GBM in R & Python using decision tree functionalities
 
Chapter 7: Neural network
Chapter Goal: Help the reader master neural network with the theory & practical concepts
No of pages: 30
Sub - Topics: 
1.      Forward propagation
2.      Backward propagation
3.      Impact of epochs and learning rate
4.      Implement Neural network in Excel, R & Python
 
Chapter 8: Convolutional neural network
Chapter Goal: Help the reader master CNN with the theory & practical concepts
No of pages: 30
Sub - Topics: 
1.      Moving from NN to CNN
2.      Key parameters within CNN
3.      Implement CNN in Excel & Python 

Chapter 9: RNN
Chapter Goal: Help the reader master RNN with the theory & practical concepts
No of pages: 25
Sub - Topics: 
 
1.      Need for RNN
2.      Key variations of RNN
3.  &nb

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

(nessuna copia disponibile)

Cerca:



Inserisci un desiderata

Non riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!

Inserisci un desiderata

Altre edizioni note dello stesso titolo

9781484235638: Pro Machine Learning Algorithms: A Hands-On Approach to Implementing Algorithms in Python and R

Edizione in evidenza

ISBN 10:  1484235630 ISBN 13:  9781484235638
Casa editrice: Apress, 2018
Brossura