Articoli correlati a Modern Data Mining Algorithms in C++ and CUDA C: Recent...

Modern Data Mining Algorithms in C++ and CUDA C: Recent Developments in Feature Extraction and Selection Algorithms for Data Science - Brossura

 
9781484259870: Modern Data Mining Algorithms in C++ and CUDA C: Recent Developments in Feature Extraction and Selection Algorithms for Data Science

Sinossi

Discover a variety of data-mining algorithms that are useful for selecting small sets of important features from among unwieldy masses of candidates, or extracting useful features from measured variables.

As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. You’ll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are:

  • Forward selection component analysis
  • Local feature selection
  • Linking features and a target with a hidden Markov model
  • Improvements on traditional stepwise selection
  • Nominal-to-ordinal conversion

All algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code. 

The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it.  

What You Will Learn

  • Combine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set.
  • Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods.
  • Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as prediction of financial markets.
  • Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck. Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input.

 

Who This Book Is For 

Intermediate to advanced data science programmers and analysts.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Timothy Masters has a PhD in statistics and is an experienced programmer. His dissertation was in image analysis. His career moved in the direction of signal processing, and for the last 25 years he's been involved in the development of automated trading systems in various financial markets.  


Dalla quarta di copertina

As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. You’ll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are:

    Forward selection component analysis
  • Local feature selection
  • Linking features and a target with a hidden Markov model
  • Improvements on traditional stepwise selection
  • Nominal-to-ordinal conversion
All algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code. 

The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it.  

You will:

  • Combine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set.
  • Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods.
  • Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as predictionof financial markets.
  • Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck.
  • Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input.
  • Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

    Compra usato

    Condizioni: molto buono
    The book has been read, but is...
    Visualizza questo articolo

    EUR 10,43 per la spedizione da Regno Unito a Italia

    Destinazione, tempi e costi

    Altre edizioni note dello stesso titolo

    9781484259894: Modern Data Mining Algorithms in C++ and CUDA C: Recent Developments in Feature Extraction and Selection Algorithms for Data Science

    Edizione in evidenza

    ISBN 10:  1484259890 ISBN 13:  9781484259894
    Casa editrice: Apress, 2020
    Brossura

    Risultati della ricerca per Modern Data Mining Algorithms in C++ and CUDA C: Recent...

    Edizione Internazionale
    Edizione Internazionale

    Masters
    Editore: Apress, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuovo Brossura
    Edizione Internazionale

    Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Condizione: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-208187

    Contatta il venditore

    Compra nuovo

    EUR 27,64
    Convertire valuta
    Spese di spedizione: GRATIS
    Da: U.S.A. a: Italia
    Destinazione, tempi e costi

    Quantità: 2 disponibili

    Aggiungi al carrello

    Foto dell'editore

    Masters, Timothy
    Editore: Apress, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Antico o usato Paperback

    Da: WorldofBooks, Goring-By-Sea, WS, Regno Unito

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Paperback. Condizione: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Codice articolo GOR014205611

    Contatta il venditore

    Compra usato

    EUR 40,72
    Convertire valuta
    Spese di spedizione: EUR 10,43
    Da: Regno Unito a: Italia
    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Immagini fornite dal venditore

    Masters, Timothy
    Editore: Apress 6/30/2020, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuovo Paperback or Softback

    Da: BargainBookStores, Grand Rapids, MI, U.S.A.

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Paperback or Softback. Condizione: New. Modern Data Mining Algorithms in C++ and Cuda C: Recent Developments in Feature Extraction and Selection Algorithms for Data Science 0.93. Book. Codice articolo BBS-9781484259870

    Contatta il venditore

    Compra nuovo

    EUR 44,32
    Convertire valuta
    Spese di spedizione: EUR 11,46
    Da: U.S.A. a: Italia
    Destinazione, tempi e costi

    Quantità: 5 disponibili

    Aggiungi al carrello

    Foto dell'editore

    Masters, Timothy
    Editore: Apress, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuovo Brossura

    Da: California Books, Miami, FL, U.S.A.

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Condizione: New. Codice articolo I-9781484259870

    Contatta il venditore

    Compra nuovo

    EUR 50,71
    Convertire valuta
    Spese di spedizione: EUR 7,64
    Da: U.S.A. a: Italia
    Destinazione, tempi e costi

    Quantità: Più di 20 disponibili

    Aggiungi al carrello

    Immagini fornite dal venditore

    Timothy Masters
    Editore: Apress, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuovo Brossura
    Print on Demand

    Da: moluna, Greven, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A novel expert-driven data-mining approach to algorithms in C++ and CUDA C&nbspAuthor has been developing and using algorithms for over 20 yearsData mining is an important topic in big data and data science. Codice articolo 362611029

    Contatta il venditore

    Compra nuovo

    EUR 56,35
    Convertire valuta
    Spese di spedizione: EUR 9,70
    Da: Germania a: Italia
    Destinazione, tempi e costi

    Quantità: Più di 20 disponibili

    Aggiungi al carrello

    Foto dell'editore

    Masters, Timothy
    Editore: Apress 2020-06, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuovo PF

    Da: Chiron Media, Wallingford, Regno Unito

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    PF. Condizione: New. Codice articolo 6666-IUK-9781484259870

    Contatta il venditore

    Compra nuovo

    EUR 48,18
    Convertire valuta
    Spese di spedizione: EUR 23,16
    Da: Regno Unito a: Italia
    Destinazione, tempi e costi

    Quantità: 10 disponibili

    Aggiungi al carrello

    Foto dell'editore

    Masters, Timothy
    Editore: Apress, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuovo Brossura

    Da: Ria Christie Collections, Uxbridge, Regno Unito

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Condizione: New. In English. Codice articolo ria9781484259870_new

    Contatta il venditore

    Compra nuovo

    EUR 64,53
    Convertire valuta
    Spese di spedizione: EUR 10,42
    Da: Regno Unito a: Italia
    Destinazione, tempi e costi

    Quantità: Più di 20 disponibili

    Aggiungi al carrello

    Foto dell'editore

    Timothy Masters
    Editore: APress, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuovo Paperback / softback
    Print on Demand

    Da: THE SAINT BOOKSTORE, Southport, Regno Unito

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 463. Codice articolo C9781484259870

    Contatta il venditore

    Compra nuovo

    EUR 66,99
    Convertire valuta
    Spese di spedizione: EUR 9,49
    Da: Regno Unito a: Italia
    Destinazione, tempi e costi

    Quantità: Più di 20 disponibili

    Aggiungi al carrello

    Foto dell'editore

    Masters, Timothy
    Editore: Apress, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuovo Paperback

    Da: Revaluation Books, Exeter, Regno Unito

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Paperback. Condizione: Brand New. 237 pages. 10.00x7.00x0.50 inches. In Stock. Codice articolo x-1484259874

    Contatta il venditore

    Compra nuovo

    EUR 66,51
    Convertire valuta
    Spese di spedizione: EUR 11,59
    Da: Regno Unito a: Italia
    Destinazione, tempi e costi

    Quantità: 2 disponibili

    Aggiungi al carrello

    Immagini fornite dal venditore

    Timothy Masters
    Editore: Apress Jun 2020, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuovo Taschenbuch
    Print on Demand

    Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Discover a variety of data-mining algorithms that are useful for selecting small sets of important features from among unwieldy masses of candidates, or extracting useful features from measured variables. As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. You'll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are:Forward selection component analysis Local feature selectionLinking features and a target with a hidden Markov modelImprovements on traditional stepwise selectionNominal-to-ordinal conversion All algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code.The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it.What You Will Learn Combine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set. Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods. Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as prediction of financial markets.Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck. Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input. Who This Book Is ForIntermediate to advanced data science programmers and analysts. 240 pp. Englisch. Codice articolo 9781484259870

    Contatta il venditore

    Compra nuovo

    EUR 69,54
    Convertire valuta
    Spese di spedizione: EUR 11,00
    Da: Germania a: Italia
    Destinazione, tempi e costi

    Quantità: 2 disponibili

    Aggiungi al carrello

    Vedi altre 8 copie di questo libro

    Vedi tutti i risultati per questo libro