Articoli correlati a Practical Machine Learning for Streaming Data with...

Practical Machine Learning for Streaming Data with Python: Design, Develop, and Validate Online Learning Models - Brossura

 
9781484268667: Practical Machine Learning for Streaming Data with Python: Design, Develop, and Validate Online Learning Models

Sinossi

Design, develop, and validate machine learning models with streaming data using the Scikit-Multiflow framework. This book is a quick start guide for data scientists and machine learning engineers looking to implement machine learning models for streaming data with Python to generate real-time insights. 

You'll start with an introduction to streaming data, the various challenges associated with it, some of its real-world business applications, and various windowing techniques. You'll then examine incremental and online learning algorithms, and the concept of model evaluation with streaming data and get introduced to the Scikit-Multiflow framework in Python. This is followed by a review of the various change detection/concept drift detection algorithms and the implementation of various datasets using Scikit-Multiflow.

Introduction to the various supervised and unsupervised algorithms for streaming data, and their implementation on various datasets using Python are also covered. The book concludes by briefly covering other open-source tools available for streaming data such as Spark, MOA (Massive Online Analysis), Kafka, and more.


What You'll Learn
  • Understand machine learning with streaming data concepts
  • Review incremental and online learning
  • Develop models for detecting concept drift
  • Explore techniques for classification, regression, and ensemble learning in streaming data contexts
  • Apply best practices for debugging and validating machine learning models in streaming data context
  • Get introduced to other open-source frameworks for handling streaming data.
Who This Book Is For

Machine learning engineers and data science professionals

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Dr. Sayan Putatunda is an experienced data scientist and researcher. He holds a Ph.D. in Applied Statistics/ Machine Learning from the Indian Institute of Management, Ahmedabad (IIMA) where his research was on streaming data and its applications in the transportation industry. He has a rich experience of working in both senior individual contributor and managerial roles in the data science industry with multiple companies such as Amazon, VMware, Mu Sigma, and more. His research interests are in streaming data, deep learning, machine learning, spatial point processes, and directional statistics. As a researcher, he has multiple publications in top international peer-reviewed journals with reputed publishers. He has presented his work at various reputed international machine learning and statistics conferences. He is also a member of IEEE.



Dalla quarta di copertina

Design, develop, and validate machine learning models with streaming data using the Scikit-Multiflow framework. This book is a quick start guide for data scientists and machine learning engineers looking to implement machine learning models for streaming data with Python to generate real-time insights. 

You'll start with an introduction to streaming data, the various challenges associated with it, some of its real-world business applications, and various windowing techniques. You'll then examine incremental and online learning algorithms, and the concept of model evaluation with streaming data and get introduced to the Scikit-Multiflow framework in Python. This is followed by a review of the various change detection/concept drift detection algorithms and the implementation of various datasets using Scikit-Multiflow.

Introduction to the various supervised and unsupervised algorithms for streaming data, and their implementation on various datasets using Python are also covered. The book concludes by briefly covering other open-source tools available for streaming data such as Spark, MOA (Massive Online Analysis), Kafka, and more.

You will:

  • Understand machine learning with streaming data concepts
  • Review incremental and online learning
  • Develop models for detecting concept drift
  • Explore techniques for classification, regression, and ensemble learning in streaming data contexts
  • Apply best practices for debugging and validating machine learning models in streaming data context
  • Get introduced to other open-source frameworks for handling streaming data.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: molto buono
Former library book; May have limited...
Visualizza questo articolo

EUR 2,83 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 6,86 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Risultati della ricerca per Practical Machine Learning for Streaming Data with...

Foto dell'editore

Putatunda, Sayan
Editore: Apress, 2021
ISBN 10: 1484268660 ISBN 13: 9781484268667
Antico o usato Paperback

Da: ThriftBooks-Dallas, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Very Good. No Jacket. Former library book; May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 0.44. Codice articolo G1484268660I4N10

Contatta il venditore

Compra usato

EUR 27,25
Convertire valuta
Spese di spedizione: EUR 2,83
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Sayan Putatunda
Editore: APress, 2021
ISBN 10: 1484268660 ISBN 13: 9781484268667
Nuovo Paperback / softback

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. New copy - Usually dispatched within 2 working days. 184. Codice articolo B9781484268667

Contatta il venditore

Compra nuovo

EUR 24,19
Convertire valuta
Spese di spedizione: EUR 6,86
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Sayan Putatunda
Editore: Apress, 2021
ISBN 10: 1484268660 ISBN 13: 9781484268667
Nuovo Brossura

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Explains the latest Scikit-Multiflow framework in detailExplains Supervised and Unsupervised Learning for streaming data&nbspOne of the first books in the market on machine learning models for streaming data us. Codice articolo 437482625

Contatta il venditore

Compra nuovo

EUR 32,72
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Putatunda, Sayan
Editore: Apress, 2021
ISBN 10: 1484268660 ISBN 13: 9781484268667
Antico o usato Brossura

Da: SecondSale, Montgomery, IL, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00054053506

Contatta il venditore

Compra usato

EUR 27,31
Convertire valuta
Spese di spedizione: EUR 30,00
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Putatunda, Sayan
Editore: Apress, 2021
ISBN 10: 1484268660 ISBN 13: 9781484268667
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 43140443-n

Contatta il venditore

Compra nuovo

EUR 42,76
Convertire valuta
Spese di spedizione: EUR 17,14
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Putatunda, Sayan
Editore: Apress, 2021
ISBN 10: 1484268660 ISBN 13: 9781484268667
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 43140443

Contatta il venditore

Compra usato

EUR 43,79
Convertire valuta
Spese di spedizione: EUR 17,14
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Putatunda, Sayan
Editore: Apress, 2021
ISBN 10: 1484268660 ISBN 13: 9781484268667
Antico o usato Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 43140443

Contatta il venditore

Compra usato

EUR 46,72
Convertire valuta
Spese di spedizione: EUR 17,27
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Sayan Putatunda
Editore: Apress, Apress, 2021
ISBN 10: 1484268660 ISBN 13: 9781484268667
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Design, develop, and validate machine learning models with streaming data using the Scikit-Multiflow framework. This book is a quick start guide for data scientists and machine learning engineers looking to implement machine learning models for streaming data with Python to generate real-time insights.You'll start with an introduction to streaming data, the various challenges associated with it, some of its real-world business applications, and various windowing techniques. You'll then examine incremental and online learning algorithms, and the concept of model evaluation with streaming data and get introduced to the Scikit-Multiflow framework in Python. This is followed by a review of the various change detection/concept drift detection algorithms and the implementation of various datasets using Scikit-Multiflow.Introduction to the various supervised and unsupervised algorithms for streaming data, and their implementation on various datasets using Python are also covered. The book concludes by briefly covering other open-source tools available for streaming data such as Spark, MOA (Massive Online Analysis), Kafka, and more.What You'll LearnUnderstand machine learning with streaming data conceptsReview incremental and online learningDevelop models for detecting concept driftExplore techniques for classification, regression, and ensemble learning in streaming data contextsApply best practices for debugging and validating machine learning models in streaming data contextGet introduced to other open-source frameworks for handling streamingdata.Who This Book Is ForMachine learning engineers and data science professionals. Codice articolo 9781484268667

Contatta il venditore

Compra nuovo

EUR 55,65
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Putatunda, Sayan
Editore: Apress, 2021
ISBN 10: 1484268660 ISBN 13: 9781484268667
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 118 pages. 9.00x6.25x0.50 inches. In Stock. Codice articolo x-1484268660

Contatta il venditore

Compra nuovo

EUR 59,80
Convertire valuta
Spese di spedizione: EUR 11,51
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Sayan Putatunda
Editore: Apress Apr 2021, 2021
ISBN 10: 1484268660 ISBN 13: 9781484268667
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Design, develop, and validate machine learning models with streaming data using the Scikit-Multiflow framework. This book is a quick start guide for data scientists and machine learning engineers looking to implement machine learning models for streaming data with Python to generate real-time insights.You'll start with an introduction to streaming data, the various challenges associated with it, some of its real-world business applications, and various windowing techniques. You'll then examine incremental and online learning algorithms, and the concept of model evaluation with streaming data and get introduced to the Scikit-Multiflow framework in Python. This is followed by a review of the various change detection/concept drift detection algorithms and the implementation of various datasets using Scikit-Multiflow.Introduction to the various supervised and unsupervised algorithms for streaming data, and their implementation on various datasets using Python are also covered. The book concludes by briefly covering other open-source tools available for streaming data such as Spark, MOA (Massive Online Analysis), Kafka, and more.What You'll LearnUnderstand machine learning with streaming data conceptsReview incremental and online learningDevelop models for detecting concept driftExplore techniques for classification, regression, and ensemble learning in streaming data contextsApply best practices for debugging and validating machine learning models in streaming data contextGet introduced to other open-source frameworks for handling streamingdata.Who This Book Is ForMachine learning engineers and data science professionals 136 pp. Englisch. Codice articolo 9781484268667

Contatta il venditore

Compra nuovo

EUR 64,19
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 9 copie di questo libro

Vedi tutti i risultati per questo libro