Articoli correlati a Advanced Forecasting with Python: With State-of-the-Art-Mode...

Advanced Forecasting with Python: With State-of-the-Art-Models Including LSTMs, Facebook’s Prophet, and Amazon’s DeepAR: With State-of-the-Art-Models ... Prophet, and Amazon’s DeepAR - Brossura

 
9781484271490: Advanced Forecasting with Python: With State-of-the-Art-Models Including LSTMs, Facebook’s Prophet, and Amazon’s DeepAR: With State-of-the-Art-Models ... Prophet, and Amazon’s DeepAR

Sinossi

Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook’s open-source Prophet model, and Amazon’s DeepAR model.

Rather than focus on a specific set of models, this book presents an exhaustive overview of all the techniques relevant to practitioners of forecasting. It begins by explaining the different categories of models that are relevant for forecasting in a high-level language. Next, it covers univariate and multivariate time series models followed by advanced machine learning and deep learning models. It concludes with reflections on model selection such as benchmark scores vs. understandability of models vs. compute time, and automated retraining and updating of models.

Each of the models presented in this book is covered in depth, with an intuitive simple explanation ofthe model, a mathematical transcription of the idea, and Python code that applies the model to an example data set.

Reading this book will add a competitive edge to your current forecasting skillset. The book is also adapted to those who have recently started working on forecasting tasks and are looking for an exhaustive book that allows them to start with traditional models and gradually move into more and more advanced models. 

What You Will Learn

  • Carry out forecasting with Python
  • Mathematically and intuitively understand traditional forecasting models and state-of-the-art machine learning techniques
  • Gain the basics of forecasting and machine learning, including evaluation of models, cross-validation, and back testing
  • Select the right model for the right use case

Who This Book Is For

The advanced nature of the later chapters makes the book relevant for appliedexperts working in the domain of forecasting, as the models covered have been published only recently. Experts working in the domain will want to update their skills as traditional models are regularly being outperformed by newer models.



Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Joos is a data scientist, with over five years of industry experience in developing machine learning tools, of which a large part is forecasting models. He currently works at Disneyland Paris where he develops machine learning for a variety of tools. His experience in writing and teaching have motivated him to make this book on advanced forecasting with Python.


Dalla quarta di copertina

Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook’s open-source Prophet model, and Amazon’s DeepAR model.

Rather than focus on a specific set of models, this book presents an exhaustive overview of all the techniques relevant to practitioners of forecasting. It begins by explaining the different categories of models that are relevant for forecasting in a high-level language. Next, it covers univariate and multivariate time series models followed by advanced machine learning and deep learning models. It concludes with reflections on model selection such as benchmark scores vs. understandability of models vs. compute time, and automated retraining and updating of models.

Each of the models presented in this book is covered in depth, with an intuitive simple explanation of the model, amathematical transcription of the idea, and Python code that applies the model to an example data set.

Reading this book will add a competitive edge to your current forecasting skillset. The book is also adapted to those who have recently started working on forecasting tasks and are looking for an exhaustive book that allows them to start with traditional models and gradually move into more and more advanced models. 

You will:

  • Carry out forecasting with Python
  • Mathematically and intuitively understand traditional forecasting models and state-of-the-art machine learning techniques
  • Gain the basics of forecasting and machine learning, including evaluation of models, cross-validation, and back testing
  • Select the right model for the right use case

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: buono
Dispatched, from the UK, within...
Visualizza questo articolo

EUR 5,29 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

EUR 11,53 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Risultati della ricerca per Advanced Forecasting with Python: With State-of-the-Art-Mode...

Foto dell'editore

Korstanje, Joos
Editore: Apress, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Antico o usato paperback

Da: Reuseabook, Gloucester, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: Used; Good. Dispatched, from the UK, within 48 hours of ordering. This book is in good condition but will show signs of previous ownership. Please expect some creasing to the spine and/or minor damage to the cover. Codice articolo CHL10458807

Contatta il venditore

Compra usato

EUR 33,39
Convertire valuta
Spese di spedizione: EUR 5,29
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Korstanje, Joos
Editore: Apress 8/17/2021, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Nuovo Paperback or Softback

Da: BargainBookStores, Grand Rapids, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback or Softback. Condizione: New. Advanced Forecasting with Python: With State-Of-The-Art-Models Including Lstms, Facebook's Prophet, and Amazon's Deepar 1.32. Book. Codice articolo BBS-9781484271490

Contatta il venditore

Compra nuovo

EUR 36,26
Convertire valuta
Spese di spedizione: EUR 11,53
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Korstanje, Joos
Editore: Apress, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781484271490

Contatta il venditore

Compra nuovo

EUR 40,47
Convertire valuta
Spese di spedizione: EUR 7,69
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Joos Korstanje
Editore: APress, US, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Nuovo Paperback Prima edizione

Da: Rarewaves USA, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. 1st ed. Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook's open-source Prophet model, and Amazon's DeepAR model.Rather than focus on a specific set of models, this book presents an exhaustive overview of all the techniques relevant to practitioners of forecasting. It begins by explaining the different categories of models that are relevant for forecasting in a high-level language. Next, it covers univariate and multivariate time series models followed by advanced machine learning and deep learning models. It concludes with reflections on model selection such as benchmark scores vs. understandability of models vs. compute time, and automated retraining and updating of models. Each of the models presented in this book is covered in depth, with an intuitive simple explanation ofthe model, a mathematical transcription of the idea, and Python code that applies the model to an example data set.Reading this book will add a competitive edge to your current forecasting skillset. The book is also adapted to those who have recently started working on forecasting tasks and are looking for an exhaustive book that allows them to start with traditional models and gradually move into more and more advanced models. What You Will LearnCarry out forecasting with PythonMathematically and intuitively understand traditional forecasting models and state-of-the-art machine learning techniquesGain the basics of forecasting and machine learning, including evaluation of models, cross-validation, and back testingSelect the right model for the right use case Who This Book Is ForThe advanced nature of the later chapters makes the book relevant for appliedexperts working in the domain of forecasting, as the models covered have been published only recently. Experts working in the domain will want to update their skills as traditional models are regularly being outperformed by newer models. Codice articolo LU-9781484271490

Contatta il venditore

Compra nuovo

EUR 46,77
Convertire valuta
Spese di spedizione: EUR 3,42
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Korstanje, Joos
Editore: Apress, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 43060686-n

Contatta il venditore

Compra nuovo

EUR 33,93
Convertire valuta
Spese di spedizione: EUR 17,08
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Joos Korstanje
Editore: APress, US, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Nuovo Paperback Prima edizione

Da: Rarewaves USA United, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. 1st ed. Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook's open-source Prophet model, and Amazon's DeepAR model.Rather than focus on a specific set of models, this book presents an exhaustive overview of all the techniques relevant to practitioners of forecasting. It begins by explaining the different categories of models that are relevant for forecasting in a high-level language. Next, it covers univariate and multivariate time series models followed by advanced machine learning and deep learning models. It concludes with reflections on model selection such as benchmark scores vs. understandability of models vs. compute time, and automated retraining and updating of models. Each of the models presented in this book is covered in depth, with an intuitive simple explanation ofthe model, a mathematical transcription of the idea, and Python code that applies the model to an example data set.Reading this book will add a competitive edge to your current forecasting skillset. The book is also adapted to those who have recently started working on forecasting tasks and are looking for an exhaustive book that allows them to start with traditional models and gradually move into more and more advanced models. What You Will LearnCarry out forecasting with PythonMathematically and intuitively understand traditional forecasting models and state-of-the-art machine learning techniquesGain the basics of forecasting and machine learning, including evaluation of models, cross-validation, and back testingSelect the right model for the right use case Who This Book Is ForThe advanced nature of the later chapters makes the book relevant for appliedexperts working in the domain of forecasting, as the models covered have been published only recently. Experts working in the domain will want to update their skills as traditional models are regularly being outperformed by newer models. Codice articolo LU-9781484271490

Contatta il venditore

Compra nuovo

EUR 48,45
Convertire valuta
Spese di spedizione: EUR 3,42
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Joos Korstanje
Editore: APress, US, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Nuovo Paperback Prima edizione

Da: Rarewaves.com UK, London, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. 1st ed. Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook's open-source Prophet model, and Amazon's DeepAR model.Rather than focus on a specific set of models, this book presents an exhaustive overview of all the techniques relevant to practitioners of forecasting. It begins by explaining the different categories of models that are relevant for forecasting in a high-level language. Next, it covers univariate and multivariate time series models followed by advanced machine learning and deep learning models. It concludes with reflections on model selection such as benchmark scores vs. understandability of models vs. compute time, and automated retraining and updating of models. Each of the models presented in this book is covered in depth, with an intuitive simple explanation ofthe model, a mathematical transcription of the idea, and Python code that applies the model to an example data set.Reading this book will add a competitive edge to your current forecasting skillset. The book is also adapted to those who have recently started working on forecasting tasks and are looking for an exhaustive book that allows them to start with traditional models and gradually move into more and more advanced models. What You Will LearnCarry out forecasting with PythonMathematically and intuitively understand traditional forecasting models and state-of-the-art machine learning techniquesGain the basics of forecasting and machine learning, including evaluation of models, cross-validation, and back testingSelect the right model for the right use case Who This Book Is ForThe advanced nature of the later chapters makes the book relevant for appliedexperts working in the domain of forecasting, as the models covered have been published only recently. Experts working in the domain will want to update their skills as traditional models are regularly being outperformed by newer models. Codice articolo LU-9781484271490

Contatta il venditore

Compra nuovo

EUR 52,70
Convertire valuta
Spese di spedizione: EUR 2,32
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Korstanje, Joos
Editore: Apress, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 43060686

Contatta il venditore

Compra usato

EUR 38,01
Convertire valuta
Spese di spedizione: EUR 17,08
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

KORSTANJE, JOOS
Editore: Apress, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Nuovo Brossura

Da: Speedyhen, London, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: NEW. Codice articolo NW9781484271490

Contatta il venditore

Compra nuovo

EUR 49,27
Convertire valuta
Spese di spedizione: EUR 8,09
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Joos Korstanje
Editore: APress, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Nuovo PAP

Da: PBShop.store US, Wood Dale, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo GB-9781484271490

Contatta il venditore

Compra nuovo

EUR 57,69
Convertire valuta
Spese di spedizione: EUR 1,20
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 21 copie di questo libro

Vedi tutti i risultati per questo libro