Intermediate-Advanced
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Pradeepta Mishra is the Head of AI (Leni) at L&T Infotech (LTI), leading a large group of data scientists, computational linguistics experts, machine learning and deep learning experts in building next generation product, ‘Leni’ world’s first virtual data scientist. He was awarded as "India's Top - 40Under40DataScientists" by Analytics India Magazine. He is an author of 4 books, his first book has been recommended in HSLS center at the University of Pittsburgh, PA, USA. His latest book #PytorchRecipes was published by Apress. He has delivered a keynote session at the Global Data Science conference 2018, USA. He has delivered a TEDx talk on "Can Machines Think?", available on the official TEDx YouTube channel. He has delivered 200+ tech talks on data science, ML, DL, NLP, and AI in various Universities, meetups, technical institutions and community arranged forums.
Learn the ins and outs of decisions, biases, and reliability of AI algorithms and how to make sense of these predictions. This book explores the so-called black-box models to boost the adaptability, interpretability, and explainability of the decisions made by AI algorithms using frameworks such as Python XAI libraries, TensorFlow 2.0+, Keras, and custom frameworks using Python wrappers.<div><br></div><div>You'll begin with an introduction to model explainability and interpretability basics, ethical consideration, and biases in predictions generated by AI models. Next, you'll look at methods and systems to interpret linear, non-linear, and time-series models used in AI. The book will also cover topics ranging from interpreting to understanding how an AI algorithm makes a decision<br></div><div><div><div><br></div><div>Further, you will learn the most complex ensemble models, explainability, and interpretability using frameworks such as Lime, SHAP, Skater, ELI5, etc. Moving forward, you will be introduced to model explainability for unstructured data and natural language processing–related tasks. Additionally, the book looks at counterfactual explanations for AI models. <i>Practical Explainable AI Using Python</i> shines the light on deep learning models, rule-based expert systems, and computer vision tasks using various XAI frameworks.</div><div><br></div></div><div>You will:</div><div><ul><li>Review the different ways of making an AI model interpretable and explainable</li><li>Examine the biasness and good ethical practices of AI models</li><li>Quantify, visualize, and estimate reliability of AI models</li><li>Design frameworks to unbox the black-box models</li><li>Assess the fairness of AI models<br></li><li>Understand the building blocks of trust in AI models<br></li><li>Increase the level of AI adoption</li></ul></div></div>
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,90 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 11,52 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Buchpark, Trebbin, Germania
Condizione: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher. Codice articolo 37981387/1
Quantità: 1 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Practical Explainable AI Using Python: Artificial Intelligence Model Explanations Using Python-based Libraries, Extensions, and Frameworks 1.39. Book. Codice articolo BBS-9781484271575
Quantità: 5 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781484271575
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 43749588-n
Quantità: 4 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo S0-9781484271575
Quantità: 10 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 43749588
Quantità: 4 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Intermediate-Advanced|Covers the core features of explainability and how to execute them using Python frameworksExplains XAI features to interpret supervised learning algorithms, NLP components and deep learning neural networksCovers biasne. Codice articolo 508575374
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 43749588
Quantità: 4 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 43749588-n
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 344 pages. 9.75x7.00x1.00 inches. In Stock. This item is printed on demand. Codice articolo __1484271572
Quantità: 2 disponibili