Articoli correlati a Machine Learning with PySpark: With Natural Language...

Machine Learning with PySpark: With Natural Language Processing and Recommender Systems - Brossura

 
9781484277768: Machine Learning with PySpark: With Natural Language Processing and Recommender Systems

Sinossi

Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems.

Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You’ll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You’ll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You’ll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark’s latest ML library.

After completing this book, you will understand how to use PySpark’s machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applications

What you will learn:

  • Build a spectrum of supervised and unsupervised machine learning  algorithms
  • Use PySpark's machine learning library to implement machine learning and recommender systems 
  • Leverage the new features in PySpark’s machine learning library
  • Understand data processing using Koalas in Spark
  • Handle issues around feature engineering, class balance, bias andvariance, and cross validation to build optimally fit models

Who This Book Is For 

Data science and machine learning professionals.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Pramod Singh works at Bain & Company in the Advanced Analytics Group. He has extensive hands-on experience in large scale machine learning, deep learning, data engineering, designing algorithms and application development. He has spent more than 13 years working in the field of Data and AI at different organizations. He’s published four books – Deploy Machine Learning Models to Production, Machine Learning with PySpark, Learn PySpark and Learn TensorFlow 2.0, all for Apress. He is also a regular speaker at major conferences such as O’Reilly’s Strata and AI conferences. Pramod holds a BTech in electrical engineering from B.A.T.U, and an MBA from Symbiosis University. He has also earned a Data Science certification from IIM–Calcutta. He lives in Gurgaon with his wife and 5-year-old son. In his spare time, he enjoys playing guitar, coding, reading, and watching football.

Dalla quarta di copertina

Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems.

Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You’ll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You’ll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You’ll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark’s latest ML library.

After completing this book, you will understand how to use PySpark’s machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applications

You will:

  • Build a spectrum of supervised and unsupervised machine learning  algorithms
  • Use PySpark's machine learning library to implement machine learning and recommender systems 
  • Leverage the new features in PySpark’s machine learning library
  • Understand data processing using Koalas in Spark
  • Handle issues around feature engineering, class balance, bias and variance, and cross validation to build optimally fit models

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: buono
Used book that is in clean, average...
Visualizza questo articolo

GRATIS per la spedizione in U.S.A.

Destinazione, tempi e costi

Risultati della ricerca per Machine Learning with PySpark: With Natural Language...

Foto dell'editore

Singh, Pramod
Editore: Apress L. P., 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Antico o usato Brossura

Da: Better World Books, Mishawaka, IN, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Good. Used book that is in clean, average condition without any missing pages. Codice articolo 53177920-6

Contatta il venditore

Compra usato

EUR 27,02
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Edizione Internazionale
Edizione Internazionale

Singh
Editore: Apress, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Nuovo Brossura
Edizione Internazionale

Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-210112

Contatta il venditore

Compra nuovo

EUR 28,27
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Singh, Pramod
Editore: Apress, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 43707187-n

Contatta il venditore

Compra nuovo

EUR 39,79
Convertire valuta
Spese di spedizione: EUR 2,26
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Singh, Pramod
Editore: Apress 12/9/2021, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Nuovo Paperback or Softback

Da: BargainBookStores, Grand Rapids, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback or Softback. Condizione: New. Machine Learning with Pyspark: With Natural Language Processing and Recommender Systems. Book. Codice articolo BBS-9781484277768

Contatta il venditore

Compra nuovo

EUR 42,13
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Singh, Pramod
Editore: Apress, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar2716030152801

Contatta il venditore

Compra nuovo

EUR 41,94
Convertire valuta
Spese di spedizione: EUR 3,42
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Singh, Pramod
Editore: Apress, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 43707187

Contatta il venditore

Compra usato

EUR 44,57
Convertire valuta
Spese di spedizione: EUR 2,26
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Singh, Pramod
Editore: Apress, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781484277768

Contatta il venditore

Compra nuovo

EUR 47,72
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Pramod Singh
Editore: APress, Berkley, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Nuovo Paperback

Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems.Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. Youll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. Youll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. Youll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySparks latest ML library.After completing this book, you will understand how to use PySparks machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applicationsWhat you will learn:Build a spectrum of supervised and unsupervised machine learning algorithmsUse PySpark's machine learning library to implement machine learning and recommender systems Leverage the new features in PySparks machine learning libraryUnderstand data processing using Koalas in Spark Handle issues around feature engineering, class balance, bias andvariance, and cross validation to build optimally fit modelsWho This Book Is For Data science and machine learning professionals. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781484277768

Contatta il venditore

Compra nuovo

EUR 50,36
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Pramod Singh
Editore: APress, US, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Nuovo Paperback

Da: Rarewaves USA, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. 2nd ed. Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems.Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You'll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You'll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You'll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark's latest ML library.After completing this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applicationsWhat you will learn:Build a spectrum of supervised and unsupervised machine learning  algorithmsUse PySpark's machine learning library to implement machine learning and recommender systems Leverage the new features in PySpark's machine learning libraryUnderstand data processing using Koalas in Spark Handle issues around feature engineering, class balance, bias andvariance, and cross validation to build optimally fit modelsWho This Book Is For Data science and machine learning professionals. Codice articolo LU-9781484277768

Contatta il venditore

Compra nuovo

EUR 57,35
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 8 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Pramod Singh
Editore: APress, US, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Nuovo Paperback

Da: Rarewaves.com USA, London, LONDO, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. 2nd ed. Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems.Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You'll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You'll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You'll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark's latest ML library.After completing this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applicationsWhat you will learn:Build a spectrum of supervised and unsupervised machine learning  algorithmsUse PySpark's machine learning library to implement machine learning and recommender systems Leverage the new features in PySpark's machine learning libraryUnderstand data processing using Koalas in Spark Handle issues around feature engineering, class balance, bias andvariance, and cross validation to build optimally fit modelsWho This Book Is For Data science and machine learning professionals. Codice articolo LU-9781484277768

Contatta il venditore

Compra nuovo

EUR 65,44
Convertire valuta
Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 8 disponibili

Aggiungi al carrello

Vedi altre 17 copie di questo libro

Vedi tutti i risultati per questo libro