Articoli correlati a Pro Deep Learning with TensorFlow 2.0: A Mathematical...

Pro Deep Learning with TensorFlow 2.0: A Mathematical Approach to Advanced Artificial Intelligence in Python - Brossura

 
9781484289303: Pro Deep Learning with TensorFlow 2.0: A Mathematical Approach to Advanced Artificial Intelligence in Python

Sinossi

This book builds upon the foundations established in its first edition, with updated chapters and the latest code implementations to bring it up to date with Tensorflow 2.0.

Pro Deep Learning with TensorFlow 2.0 begins with the mathematical and core technical foundations of deep learning. Next, you will learn about convolutional neural networks, including new convolutional methods such as dilated convolution, depth-wise separable convolution, and their implementation. You’ll then gain an understanding of natural language processing in advanced network architectures such as transformers and various attention mechanisms relevant to natural language processing and neural networks in general. As you progress through the book, you’ll explore unsupervised learning frameworks that reflect the current state of deep learning methods, such as autoencoders and variational autoencoders. The final chapter covers the advanced topic of generative adversarial networks and their variants, such as cycle consistency GANs and graph neural network techniques such as graph attention networks and GraphSAGE.

Upon completing this book, you will understand the mathematical foundations and concepts of deep learning, and be able to use the prototypes demonstrated to build new deep learning applications.

What You Will Learn

  • Understand full-stack deep learning using TensorFlow 2.0
  • Gain an understanding of the mathematical foundations of deep learning
  • Deploy complex deep learning solutions in production using TensorFlow 2.0
  • Understand generative adversarial networks, graph attention networks, and GraphSAGE

Who This Book Is For:

Data scientists and machine learning professionals, software developers, graduate students, and open source enthusiasts.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Santanu Pattanayak works as a Senior Staff Machine Learning Specialist at Qualcomm Corp R&D and is the author of Quantum Machine Learning with Python, published by Apress. He has more than 16 years of experience, having worked at GE, Capgemini, and IBM before joining Qualcomm. He graduated with a degree in electrical engineering from Jadavpur University, Kolkata and is an avid math enthusiast. Santanu has a master’s degree in data science from the Indian Institute of Technology (IIT), Hyderabad. He also participates in Kaggle competitions in his spare time, where he ranks in the top 500. Currently, he resides in Bangalore with his wife.

Dalla quarta di copertina

This book builds upon the foundations established in its first edition, with updated chapters and the latest code implementations to bring it up to date with Tensorflow 2.0.

Pro Deep Learning with TensorFlow 2.0 begins with the mathematical and core technical foundations of deep learning. Next, you will learn about convolutional neural networks, including new convolutional methods such as dilated convolution, depth-wise separable convolution, and their implementation. You’ll then gain an understanding of natural language processing in advanced network architectures such as transformers and various attention mechanisms relevant to natural language processing and neural networks in general. As you progress through the book, you’ll explore unsupervised learning frameworks that reflect the current state of deep learning methods, such as autoencoders and variational autoencoders. The final chapter covers the advanced topic of generative adversarial networks and their variants, such as cycle consistency GANs and graph neural network techniques such as Node2Vec, GCN, GraphSAGE, and graph attention networks.

Upon completing this book, you will understand the mathematical foundations and concepts of deep learning, and be able to use the prototypes demonstrated to build new deep learning applications.

You will:

  • Understand full-stack deep learning using TensorFlow 2.0
  • Gain an understanding of the mathematical foundations of deep learning
  • Deploy complex deep learning solutions in production using TensorFlow 2.0
  • Understand generative adversarial networks, graph attention networks, and GraphSAGE

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 2,27 per la spedizione in U.S.A.

Destinazione, tempi e costi

Risultati della ricerca per Pro Deep Learning with TensorFlow 2.0: A Mathematical...

Foto dell'editore

Pattanayak, Santanu
Editore: 0, 2023
ISBN 10: 1484289307 ISBN 13: 9781484289303
Nuovo Brossura

Da: Lakeside Books, Benton Harbor, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Codice articolo OTF-S-9781484289303

Contatta il venditore

Compra nuovo

EUR 39,31
Convertire valuta
Spese di spedizione: EUR 3,43
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Pattanayak, Santanu
Editore: Apress, 2023
ISBN 10: 1484289307 ISBN 13: 9781484289303
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 45291128-n

Contatta il venditore

Compra nuovo

EUR 40,49
Convertire valuta
Spese di spedizione: EUR 2,27
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Pattanayak, Santanu
Editore: Apress 1/15/2023, 2023
ISBN 10: 1484289307 ISBN 13: 9781484289303
Nuovo Paperback or Softback

Da: BargainBookStores, Grand Rapids, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback or Softback. Condizione: New. Pro Deep Learning with Tensorflow 2.0: A Mathematical Approach to Advanced Artificial Intelligence in Python. Book. Codice articolo BBS-9781484289303

Contatta il venditore

Compra nuovo

EUR 43,25
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Pattanayak, Santanu
Editore: Apress, 2023
ISBN 10: 1484289307 ISBN 13: 9781484289303
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781484289303

Contatta il venditore

Compra nuovo

EUR 47,76
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Pattanayak, Santanu
Editore: Apress, 2023
ISBN 10: 1484289307 ISBN 13: 9781484289303
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 45291128

Contatta il venditore

Compra usato

EUR 45,58
Convertire valuta
Spese di spedizione: EUR 2,27
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Santanu Pattanayak
Editore: APress, Berkley, 2023
ISBN 10: 1484289307 ISBN 13: 9781484289303
Nuovo Paperback

Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. This book builds upon the foundations established in its first edition, with updated chapters and the latest code implementations to bring it up to date with Tensorflow 2.0.Pro Deep Learning with TensorFlow 2.0 begins with the mathematical and core technical foundations of deep learning. Next, you will learn about convolutional neural networks, including new convolutional methods such as dilated convolution, depth-wise separable convolution, and their implementation. Youll then gain an understanding of natural language processing in advanced network architectures such as transformers and various attention mechanisms relevant to natural language processing and neural networks in general. As you progress through the book, youll explore unsupervised learning frameworks that reflect the current state of deep learning methods, such as autoencoders and variational autoencoders. The final chapter covers the advanced topic of generative adversarial networks and their variants, such as cycle consistency GANs and graph neural network techniques such as graph attention networks and GraphSAGE.Upon completing this book, you will understand the mathematical foundations and concepts of deep learning, and be able to use the prototypes demonstrated to build new deep learning applications.What You Will LearnUnderstand full-stack deep learning using TensorFlow 2.0Gain an understanding of the mathematical foundations of deep learning Deploy complex deep learning solutions in production using TensorFlow 2.0Understand generative adversarial networks, graph attention networks, and GraphSAGEWho This Book Is For: Data scientists and machine learning professionals, software developers, graduate students, and open source enthusiasts. Intermediate-Advanced user level Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781484289303

Contatta il venditore

Compra nuovo

EUR 51,73
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Santanu Pattanayak
Editore: APress, 2023
ISBN 10: 1484289307 ISBN 13: 9781484289303
Nuovo Paperback / softback

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. New copy - Usually dispatched within 2 working days. Codice articolo B9781484289303

Contatta il venditore

Compra nuovo

EUR 40,18
Convertire valuta
Spese di spedizione: EUR 14,78
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Pattanayak, Santanu
Editore: Apress, 2023
ISBN 10: 1484289307 ISBN 13: 9781484289303
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 26395232035

Contatta il venditore

Compra nuovo

EUR 53,46
Convertire valuta
Spese di spedizione: EUR 3,43
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Santanu Pattanayak
Editore: APress, US, 2023
ISBN 10: 1484289307 ISBN 13: 9781484289303
Nuovo Paperback

Da: Rarewaves.com USA, London, LONDO, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. 2nd ed. This book builds upon the foundations established in its first edition, with updated chapters and the latest code implementations to bring it up to date with Tensorflow 2.0.Pro Deep Learning with TensorFlow 2.0 begins with the mathematical and core technical foundations of deep learning. Next, you will learn about convolutional neural networks, including new convolutional methods such as dilated convolution, depth-wise separable convolution, and their implementation. You'll then gain an understanding of natural language processing in advanced network architectures such as transformers and various attention mechanisms relevant to natural language processing and neural networks in general. As you progress through the book, you'll explore unsupervised learning frameworks that reflect the current state of deep learning methods, such as autoencoders and variational autoencoders. The final chapter covers the advanced topic of generative adversarial networks and their variants, such as cycle consistency GANs and graph neural network techniques such as graph attention networks and GraphSAGE.Upon completing this book, you will understand the mathematical foundations and concepts of deep learning, and be able to use the prototypes demonstrated to build new deep learning applications.What You Will LearnUnderstand full-stack deep learning using TensorFlow 2.0Gain an understanding of the mathematical foundations of deep learning Deploy complex deep learning solutions in production using TensorFlow 2.0Understand generative adversarial networks, graph attention networks, and GraphSAGEWho This Book Is For: Data scientists and machine learning professionals, software developers, graduate students, and open source enthusiasts. Codice articolo LU-9781484289303

Contatta il venditore

Compra nuovo

EUR 57,86
Convertire valuta
Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

0
Editore: Apress, 2023
ISBN 10: 1484289307 ISBN 13: 9781484289303
Nuovo Brossura

Da: Basi6 International, Irving, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEOCT25-11596

Contatta il venditore

Compra nuovo

EUR 58,74
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 28 copie di questo libro

Vedi tutti i risultati per questo libro