Articoli correlati a Time Series Algorithms Recipes: Implement Machine Learning...

Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python - Brossura

 
9781484289778: Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python

Sinossi

This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. 

It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive  integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations.
 
After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python.
 
What You Will Learn
  • Implement various techniques in time series analysis using Python.
  • Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average),  ARMA (autoregressive moving-average) and ARIMA (autoregressive  integrated moving-average) for time series forecasting 
  • Understand univariate and multivariate modeling for time series forecasting
  • Forecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory)
 
Who This Book Is For
Data Scientists, Machine Learning Engineers, and software developers interested in time series analysis.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Akshay Kulkarni is an AI and machine learning (ML) evangelist and a thought leader. He has consulted several Fortune 500 and global enterprises to drive AI and data science-led strategic transformations. He has been honoured as Google Developer Expert, and is an Author and a regular speaker at top AI and data science conferences (including Strata, O’Reilly AI Conf, and GIDS). He is a visiting faculty member for some of the top graduate institutes in India. In 2019, he has been also featured as one of the top 40 under 40 Data Scientists in India. In his spare time, he enjoys reading, writing, coding, and helping aspiring data scientists. He lives in Bangalore with his family.

Adarsha Shivananda is a Data science and MLOps Leader. He is working on creating worldclass MLOps capabilities to ensure continuous value delivery from AI. He aims to build a pool of exceptional data scientists within and outside of the organization to solve problems through training programs, and always wants to stay ahead of the curve. He has worked extensively in the pharma, healthcare, CPG, retail, and marketing domains. He lives in Bangalore and loves to read and teach data science.

Anoosh Kulkarni is a data scientist and a Senior AI consultant. He has worked with global clients across multiple domains and helped them solve their business problems using machine learning (ML), natural language processing (NLP), and deep learning.. Anoosh is passionate about guiding and mentoring people in their data science journey. He leads data science/machine learning meet-ups  and helps aspiring data scientists navigate their careers. He also conducts ML/AI workshops at universities and is actively involved in conducting webinars, talks, and sessions on AI and data science. He lives in Bangalore with his family.

V Adithya Krishnan is a data scientist and ML Ops Engineer. He has worked with various global clients across multiple domainsand helped them to solve their business problems extensively using advanced Machine learning (ML) applications. He has experience across multiple fields of AI-ML, including, Time-series forecasting, Deep Learning, NLP, ML Operations, Image processing, and data analytics. Presently, he is working on  a state-of-the-art value observability suite for models in production, which includes continuous model and data monitoring along with the business value realized. He also published a paper at an IEEE conference, “Deep Learning Based Approach for Range Estimation," written in collaboration with the DRDO. He lives in Chennai with his family.


Dalla quarta di copertina

This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. 


It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive  integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations.
 
After finishing this book, you will have a foundational understanding of various concepts relating to time series and its implementation in Python.
 
You will:
  • Implement various techniques in time series analysis using Python.
  • Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average),  ARMA (autoregressive moving-average) and ARIMA (autoregressive  integrated moving-average) for time series forecasting 
  • Understand univariate and multivariate modeling for time series forecasting
  • Forecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory)

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 16,98 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 2,31 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781484289792: Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python

Edizione in evidenza

ISBN 10:  148428979X ISBN 13:  9781484289792
Casa editrice: Apress, 2022
Brossura

Risultati della ricerca per Time Series Algorithms Recipes: Implement Machine Learning...

Immagini fornite dal venditore

V Adithya Krishnan, Akshay R Kulkarni, Adarsha Shivananda, Anoosh Kulkarni
Editore: APress, US, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuovo Paperback Prima edizione

Da: Rarewaves.com UK, London, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. 1st ed. This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive  integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average),  ARMA (autoregressive moving-average) and ARIMA (autoregressive  integrated moving-average) for time series forecasting Understand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory) Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis. Codice articolo LU-9781484289778

Contatta il venditore

Compra nuovo

EUR 29,70
Convertire valuta
Spese di spedizione: EUR 2,31
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

V Adithya Krishnan, Akshay R Kulkarni, Adarsha Shivananda, Anoosh Kulkarni
Editore: APress, US, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuovo Paperback Prima edizione

Da: Rarewaves.com USA, London, LONDO, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. 1st ed. This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive  integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average),  ARMA (autoregressive moving-average) and ARIMA (autoregressive  integrated moving-average) for time series forecasting Understand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory) Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis. Codice articolo LU-9781484289778

Contatta il venditore

Compra nuovo

EUR 32,70
Convertire valuta
Spese di spedizione: EUR 2,31
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Kulkarni, Akshay R; Shivananda, Adarsha; Kulkarni, Anoosh; Krishnan, V Adithya
Editore: Apress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781484289778

Contatta il venditore

Compra nuovo

EUR 28,87
Convertire valuta
Spese di spedizione: EUR 7,64
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Akshay R Kulkarni
Editore: APress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuovo Paperback / softback

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. New copy - Usually dispatched within 2 working days. 184. Codice articolo B9781484289778

Contatta il venditore

Compra nuovo

EUR 29,69
Convertire valuta
Spese di spedizione: EUR 6,87
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Kulkarni, Akshay R.
Editore: Apress 12/24/2022, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuovo Paperback or Softback

Da: BargainBookStores, Grand Rapids, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback or Softback. Condizione: New. Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python 0.61. Book. Codice articolo BBS-9781484289778

Contatta il venditore

Compra nuovo

EUR 25,82
Convertire valuta
Spese di spedizione: EUR 11,47
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Kulkarni, Akshay R;shivananda, Adarsha;kulkarni, Anoosh;krishnan, V Adithya
Editore: Apress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 45291587

Contatta il venditore

Compra usato

EUR 20,32
Convertire valuta
Spese di spedizione: EUR 16,98
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Kulkarni, Akshay R;shivananda, Adarsha;kulkarni, Anoosh;krishnan, V Adithya
Editore: Apress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 45291587-n

Contatta il venditore

Compra nuovo

EUR 23,40
Convertire valuta
Spese di spedizione: EUR 16,98
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Kulkarni, Akshay R|Shivananda, Adarsha|Kulkarni, Anoosh|Krishnan, V Adithya
Editore: Springer, Berlin|Apress, 2023
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuovo Brossura

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 715557257

Contatta il venditore

Compra nuovo

EUR 32,39
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Akshay Kulkarni
Editore: APress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Codice articolo C9781484289778

Contatta il venditore

Compra nuovo

EUR 33,80
Convertire valuta
Spese di spedizione: EUR 9,79
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Kulkarni, Akshay R; Shivananda, Adarsha; Kulkarni, Anoosh; Krishnan, V Adithya
Editore: Apress, 2022
ISBN 10: 1484289773 ISBN 13: 9781484289778
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781484289778_new

Contatta il venditore

Compra nuovo

EUR 35,05
Convertire valuta
Spese di spedizione: EUR 10,37
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 11 copie di questo libro

Vedi tutti i risultati per questo libro