Articoli correlati a Mlops Lifecycle Toolkit: A Software Engineering Roadmap...

Mlops Lifecycle Toolkit: A Software Engineering Roadmap for Designing, Deploying, and Scaling Stochastic Systems - Brossura

 
9781484296417: Mlops Lifecycle Toolkit: A Software Engineering Roadmap for Designing, Deploying, and Scaling Stochastic Systems

Sinossi

This book is aimed at practitioners of data science, with consideration for bespoke problems, standards, and tech stacks between industries. It will guide you through the fundamentals of technical decision making, including planning, building, optimizing, packaging, and deploying end-to-end, reliable, and robust stochastic workflows using the language of data science.

MLOps Lifecycle Toolkit walks you through the principles of software engineering, assuming no prior experience. It addresses the perennial “why” of MLOps early, along with insight into the unique challenges of engineering stochastic systems. Next, you’ll discover resources to learn software craftsmanship, data-driven testing frameworks, and computer science. Additionally, you will see how to transition from Jupyter notebooks to code editors, and leverage infrastructure and cloud services to take control of the entire machine learning lifecycle. You’ll gain insight into the technical and architectural decisions you’re likely to encounter, as well as best practices for deploying accurate, extensible, scalable, and reliable models. Through hands-on labs, you will build your own MLOps “toolkit” that you can use to accelerate your own projects. In later chapters, author Dayne Sorvisto takes a thoughtful, bottom-up approach to machine learning engineering by considering the hard problems unique to industries such as high finance, energy, healthcare, and tech as case studies, along with the ethical and technical constraints that shape decision making.

After reading this book, whether you are a data scientist, product manager, or industry decision maker, you will be equipped to deploy models to production, understand the nuances of MLOps in the domain language of your industry, and have the resources for continuous delivery and learning.

What You Will Learn

  • Understand the principles of software engineering and MLOps
  • Design an end-to-end machine learning system
  • Balance technical decisions and architectural trade-offs
  • Gain insight into the fundamental problems unique to each industry and how to solve them

Who This Book Is For

Data scientists, machine learning engineers, and software professionals.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Dayne Sorvisto has a Master of Science degree in Mathematics and Statistics and became an expert in MLOps. He started his career in data science before becoming a software engineer. He has worked for tech start-ups and has consulted for Fortune 500 companies in diverse industries including energy and finance. Dayne has previously won awards for his research including Industry Track Best Paper Award. Dayne has also written about security in MLOps systems for Dell EMC’s Proven Professional Knowledge Sharing platform and has contributed to many of the open-source projects he uses regularly.

Dalla quarta di copertina

This book is aimed at practitioners of data science, with consideration for bespoke problems, standards, and tech stacks between industries. It will guide you through the fundamentals of technical decision making, including planning, building, optimizing, packaging, and deploying end-to-end, reliable, and robust stochastic workflows using the language of data science.

MLOps Lifecycle Toolkit walks you through the principles of software engineering, assuming no prior experience. It addresses the perennial “why” of MLOps early, along with insight into the unique challenges of engineering stochastic systems. Next, you’ll discover resources to learn software craftsmanship, data-driven testing frameworks, and computer science. Additionally, you will see how to transition from Jupyter notebooks to code editors, and leverage infrastructure and cloud services to take control of the entire machine learning lifecycle. You’ll gain insight into the technical and architectural decisions you’re likely to encounter, as well as best practices for deploying accurate, extensible, scalable, and reliable models. Through hands-on labs, you will build your own MLOps “toolkit” that you can use to accelerate your own projects. In later chapters, author Dayne Sorvisto takes a thoughtful, bottom-up approach to machine learning engineering by considering the hard problems unique to industries such as high finance, energy, healthcare, and tech as case studies, along with the ethical and technical constraints that shape decision making.

After reading this book, whether you are a data scientist, product manager, or industry decision maker, you will be equipped to deploy models to production, understand the nuances of MLOps in the domain language of your industry, and have the resources for continuous delivery and learning.

You will:

  • Understand the principles of software engineering and MLOps
  • Design an end-to-end machine learning system
  • Balance technical decisions and architectural trade-offs
  • Gain insight into the fundamental problems unique to each industry and how to solve them

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: molto buono
Visualizza questo articolo

EUR 12,37 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 7,68 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781484296431: MLOps Lifecycle Toolkit: A Software Engineering Roadmap for Designing, Deploying, and Scaling Stochastic Systems

Edizione in evidenza

ISBN 10:  1484296435 ISBN 13:  9781484296431
Casa editrice: Apress, 2023
Brossura

Risultati della ricerca per Mlops Lifecycle Toolkit: A Software Engineering Roadmap...

Foto dell'editore

Sorvisto, Dayne
Editore: Apress, 2023
ISBN 10: 1484296419 ISBN 13: 9781484296417
Antico o usato paperback

Da: Books From California, Simi Valley, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: Very Good. Codice articolo mon0003603453

Contatta il venditore

Compra usato

EUR 6,60
Convertire valuta
Spese di spedizione: EUR 12,37
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Dayne Sorvisto
Editore: Apress, 2023
ISBN 10: 1484296419 ISBN 13: 9781484296417
Antico o usato Brossura

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Hervorragend. Zustand: Hervorragend | Seiten: 292 | Sprache: Englisch | Produktart: Bücher. Codice articolo 41815553/1

Contatta il venditore

Compra usato

EUR 25,18
Convertire valuta
Spese di spedizione: EUR 9,90
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Sorvisto, Dayne
Editore: Apress, 2023
ISBN 10: 1484296419 ISBN 13: 9781484296417
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 46119599

Contatta il venditore

Compra usato

EUR 18,05
Convertire valuta
Spese di spedizione: EUR 17,05
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Sorvisto, Dayne
Editore: Apress, 2023
ISBN 10: 1484296419 ISBN 13: 9781484296417
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781484296417

Contatta il venditore

Compra nuovo

EUR 36,90
Convertire valuta
Spese di spedizione: EUR 7,68
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Sorvisto, Dayne
Editore: Apress, 2023
ISBN 10: 1484296419 ISBN 13: 9781484296417
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 46119599-n

Contatta il venditore

Compra nuovo

EUR 30,38
Convertire valuta
Spese di spedizione: EUR 17,05
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dayne Sorvisto
Editore: Apress, 2023
ISBN 10: 1484296419 ISBN 13: 9781484296417
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Explains deploying machine learning models with accuracy, extensibility, scalability, and reliabilityCovers deploying ML systems in a variety of industries with case studiesExplains how to create value by taking ownership of the complete m. Codice articolo 881233008

Contatta il venditore

Compra nuovo

EUR 44,39
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Sorvisto, Dayne
Editore: Apress, 2023
ISBN 10: 1484296419 ISBN 13: 9781484296417
Antico o usato Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 46119599

Contatta il venditore

Compra usato

EUR 42,19
Convertire valuta
Spese di spedizione: EUR 17,38
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Sorvisto, Dayne
Editore: Apress, 2023
ISBN 10: 1484296419 ISBN 13: 9781484296417
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 291 pages. 9.25x6.10x0.61 inches. In Stock. Codice articolo x-1484296419

Contatta il venditore

Compra nuovo

EUR 49,16
Convertire valuta
Spese di spedizione: EUR 11,59
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Sorvisto, Dayne
Editore: Apress, 2023
ISBN 10: 1484296419 ISBN 13: 9781484296417
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 46119599-n

Contatta il venditore

Compra nuovo

EUR 46,78
Convertire valuta
Spese di spedizione: EUR 17,38
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dayne Sorvisto
Editore: Apress Jul 2023, 2023
ISBN 10: 1484296419 ISBN 13: 9781484296417
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is aimed at practitioners of data science, with consideration for bespoke problems, standards, and tech stacks between industries. It will guide you through the fundamentals of technical decision making, including planning, building, optimizing, packaging, and deploying end-to-end, reliable, and robust stochastic workflows using the language of data science.MLOps Lifecycle Toolkitwalks you through the principles of software engineering, assuming no prior experience. It addresses the perennial 'why' of MLOps early, along with insight into the unique challenges of engineering stochastic systems. Next, you'll discover resources to learn software craftsmanship, data-driven testing frameworks, and computer science. Additionally, you will see how to transition from Jupyter not Elektronisches Buch to code editors, and leverage infrastructure and cloud services to take control of the entire machine learning lifecycle. You'll gain insight into the technical and architectural decisions you're likely to encounter, as well as best practices for deploying accurate, extensible, scalable, and reliable models. Through hands-on labs, you will build your own MLOps 'toolkit' that you can use to accelerate your own projects. In later chapters, author Dayne Sorvisto takes a thoughtful, bottom-up approach to machine learning engineering by considering the hard problems unique to industries such as high finance, energy, healthcare, and tech as case studies, along with the ethical and technical constraints that shape decision making.After reading this book, whether you are a data scientist, product manager, or industry decision maker, you will be equipped to deploy models to production, understand the nuances of MLOps in the domain language of your industry, and have the resources for continuous delivery and learning.What You Will LearnUnderstand the principles of software engineering and MLOpsDesign an end-to-end machine learning systemBalance technical decisions and architectural trade-offsGain insight into the fundamental problems unique to each industry and how to solve themWho This Book Is ForData scientists, machine learning engineers, and software professionals. 292 pp. Englisch. Codice articolo 9781484296417

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 7 copie di questo libro

Vedi tutti i risultati per questo libro