Stochastic Partial Differential Equations analyzes mathematical models of time-dependent physical phenomena on microscopic, macroscopic and mesoscopic levels. It provides a rigorous derivation of each level from the preceding one and examines the resulting mesoscopic equations in detail. Coverage first describes the transition from the microscopic equations to the mesoscopic equations. It then covers a general system for the positions of the large particles.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
This book provides the first rigorous derivation of mesoscopic and macroscopic equations from a deterministic system of microscopic equations. The microscopic equations are cast in the form of a deterministic (Newtonian) system of coupled nonlinear oscillators for N large particles and infinitely many small particles. The mesoscopic equations are stochastic ordinary differential equations (SODEs) and stochastic partial differential equatuions (SPDEs), and the macroscopic limit is described by a parabolic partial differential equation.
A detailed analysis of the SODEs and (quasi-linear) SPDEs is presented. Semi-linear (parabolic) SPDEs are represented as first order stochastic transport equations driven by Stratonovich differentials. The time evolution of correlated Brownian motions is shown to be consistent with the depletion phenomena experimentally observed in colloids. A covariance analysis of the random processes and random fields as well as a review section of various approaches to SPDEs are also provided.
An extensive appendix makes the book accessible to both scientists and graduate students who may not be specialized in stochastic analysis.
Probabilists, mathematical and theoretical physicists as well as mathematical biologists and their graduate students will find this book useful.
Peter Kotelenez is a professor of mathematics at Case Western Reserve University in Cleveland, Ohio.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,84 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Analyzes mathematical models of time-dependent physical phenomena on three levels including microscopic, mesoscopic and macroscopic.Stochastic Partial Differential Equations analyzes mathematical models of time-dependent physical phenomena on . Codice articolo 11466780
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Stochastic Partial Differential Equations analyzes mathematical models of time-dependent physical phenomena on microscopic, macroscopic and mesoscopic levels. It provides a rigorous derivation of each level from the preceding one and examines the resulting mesoscopic equations in detail. Coverage first describes the transition from the microscopic equations to the mesoscopic equations. It then covers a general system for the positions of the large particles. 472 pp. Englisch. Codice articolo 9781489986580
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The present volume analyzes mathematical models of time-dependent physical p- nomena on three levels: microscopic, mesoscopic, and macroscopic. We provide a rigorous derivation of each level from the preceding level and the resulting me- scopic equations are analyzed in detail. Following Haken (1983, Sect. 1. 11. 6) we deal, ¿at the microscopic level, with individual atoms or molecules, described by their positions, velocities, and mutual interactions. At the mesoscopic level, we describe the liquid by means of ensembles of many atoms or molecules. The - tension of such an ensemble is assumed large compared to interatomic distances but small compared to the evolving macroscopic pattern. . . . At the macroscopic level we wish to study the corresponding spatial patterns. ¿ Typically, at the mac- scopic level, the systems under consideration are treated as spatially continuous systems such as uids or a continuous distribution of some chemical reactants, etc. Incontrast,onthemicroscopiclevel,Newtonianmechanicsgovernstheequationsof 1 motion of the individual atoms or molecules. These equations are cast in the form 2 of systems of deterministic coupled nonlinear oscillators. The mesoscopic level is probabilistic in nature and many models may be faithfully described by stochastic 3 ordinary and stochastic partial differential equations (SODEs and SPDEs), where the latter are de ned on a continuum. The macroscopic level is described by ti- dependent partial differential equations (PDE¿s) and its generalization and simpl- cations. In our mathematical framework we talk of particles instead of atoms and mo- cules. The transition from the microscopic description to a mesoscopic (i. e.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 472 pp. Englisch. Codice articolo 9781489986580
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781489986580_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The present volume analyzes mathematical models of time-dependent physical p- nomena on three levels: microscopic, mesoscopic, and macroscopic. We provide a rigorous derivation of each level from the preceding level and the resulting me- scopic equations are analyzed in detail. Following Haken (1983, Sect. 1. 11. 6) we deal, 'at the microscopic level, with individual atoms or molecules, described by their positions, velocities, and mutual interactions. At the mesoscopic level, we describe the liquid by means of ensembles of many atoms or molecules. The - tension of such an ensemble is assumed large compared to interatomic distances but small compared to the evolving macroscopic pattern. . . . At the macroscopic level we wish to study the corresponding spatial patterns. ' Typically, at the mac- scopic level, the systems under consideration are treated as spatially continuous systems such as uids or a continuous distribution of some chemical reactants, etc. Incontrast,onthemicroscopiclevel,Newtonianmechanicsgovernstheequationsof 1 motion of the individual atoms or molecules. These equations are cast in the form 2 of systems of deterministic coupled nonlinear oscillators. The mesoscopic level is probabilistic in nature and many models may be faithfully described by stochastic 3 ordinary and stochastic partial differential equations (SODEs and SPDEs), where the latter are de ned on a continuum. The macroscopic level is described by ti- dependent partial differential equations (PDE's) and its generalization and simpl- cations. In our mathematical framework we talk of particles instead of atoms and mo- cules. The transition from the microscopic description to a mesoscopic (i. e. Codice articolo 9781489986580
Quantità: 1 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 718. Codice articolo C9781489986580
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 472. Codice articolo 26356580581
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 472. Codice articolo 355943226
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 472. Codice articolo 18356580591
Quantità: 4 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2716030159054
Quantità: Più di 20 disponibili