In the second edition of this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. Updated for Spark 2.1, this edition acts as an introduction to these techniques and other best practices in Spark programming.
You'll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques--including classification, clustering, collaborative filtering, and anomaly detection--to fields such as genomics, security, and finance.
If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you'll find the book's patterns useful for working on your own data applications.
With this book, you will:
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Sandy Ryza develops algorithms for public transit at Remix. Prior, he was a senior data scientist at Cloudera and Clover Health. He is an Apache Spark committer, Apache Hadoop PMC member, and founder of the Time Series for Spark project. He holds the Brown University computer science department's 2012 Twining award for "Most Chill".
Uri Laserson is an Assistant Professor of Genetics at the Icahn School of Medicine at Mount Sinai, where he develops scalable technology for genomics and immunology using the Hadoop ecosystem.
Sean Owen is Director of Data Science at Cloudera. He is an ApacheSpark committer and PMC member, and was an Apache Mahout committer.
Josh Wills is the Head of Data Engineering at Slack, the founder of the Apache Crunch project, and wrote a tweet about data scientists once.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 6,69 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 1,19 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: ThriftBooks-Dallas, Dallas, TX, U.S.A.
Paperback. Condizione: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.05. Codice articolo G1491972955I4N00
Quantità: 1 disponibili
Da: WorldofBooks, Goring-By-Sea, WS, Regno Unito
Paperback. Condizione: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Codice articolo GOR009771623
Quantità: 1 disponibili
Da: Better World Books, Mishawaka, IN, U.S.A.
Condizione: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects. Codice articolo 49439461-6
Quantità: 1 disponibili
Da: SecondSale, Montgomery, IL, U.S.A.
Condizione: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00064674770
Quantità: 1 disponibili
Da: SecondSale, Montgomery, IL, U.S.A.
Condizione: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00088233888
Quantità: 2 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WO-9781491972953
Quantità: 1 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Advanced Analytics with Spark: Patterns for Learning from Data at Scale 0.9. Book. Codice articolo BBS-9781491972953
Quantità: 5 disponibili
Da: Rarewaves USA, OSWEGO, IL, U.S.A.
Paperback. Condizione: New. In the second edition of this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. Updated for Spark 2.1, this edition acts as an introduction to these techniques and other best practices in Spark programming. You'll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques-including classification, clustering, collaborative filtering, and anomaly detection-to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you'll find the book's patterns useful for working on your own data applications. With this book, you will: Familiarize yourself with the Spark programming model Become comfortable within the Spark ecosystem Learn general approaches in data science Examine complete implementations that analyze large public data sets Discover which machine learning tools make sense for particular problems Acquire code that can be adapted to many uses. Codice articolo LU-9781491972953
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WO-9781491972953
Quantità: 1 disponibili
Da: Rarewaves USA United, OSWEGO, IL, U.S.A.
Paperback. Condizione: New. In the second edition of this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. Updated for Spark 2.1, this edition acts as an introduction to these techniques and other best practices in Spark programming. You'll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques-including classification, clustering, collaborative filtering, and anomaly detection-to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you'll find the book's patterns useful for working on your own data applications. With this book, you will: Familiarize yourself with the Spark programming model Become comfortable within the Spark ecosystem Learn general approaches in data science Examine complete implementations that analyze large public data sets Discover which machine learning tools make sense for particular problems Acquire code that can be adapted to many uses. Codice articolo LU-9781491972953
Quantità: Più di 20 disponibili