Data is bigger, arrives faster, and comes in a variety of formatsâ and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark.
Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, youâ ll be able to:
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
<div><p>Jules S. Damji is a senior developer advocate at Databricks and an MLflow contributor. He is a hands-on developer with over 20 years of experience and has worked as a software engineer at leading companies such as Sun Microsystems, Netscape, @Home, Loudcloud/Opsware, Verisign, ProQuest, and Hortonworks, building large scale distributed systems. He holds a B.Sc. and an M.Sc. in computer science and an MA in political advocacy and communication from Oregon State University, Cal State, and Johns Hopkins University, respectively.</p></div><div><p>Brooke Wenig is a machine learning practice lead at Databricks. She leads a team of data scientists who develop large-scale machine learning pipelines for customers, as well as teaching courses on distributed machine learning best practices. Previously, she was a principal data science consultant at Databricks. She holds an M.S. in computer science from UCLA with a focus on distributed machine learning.</p></div><div><p>Tathagata Das is a staff software engineer at Databricks, an Apache Spark committer, and a member of the Apache Spark Project Management Committee (PMC). He is one of the original developers of Apache Spark, the lead developer of Spark Streaming (DStreams), and is currently one of the core developers of Structured Streaming and Delta Lake. Tathagata holds an M.S. in computer science from UC Berkeley.</p></div><div><p>Denny Lee is a staff developer advocate at Databricks who has been working with Apache Spark since 0.6. He is a hands-on distributed systems and data sciences engineer with extensive experience developing internet-scale infrastructure, data platforms, and predictive analytics systems for both on-premises and cloud environments. He also has an M.S. in biomedical informatics from Oregon Health and Sciences University and has architected and implemented powerful data solutions for enterprise healthcare customers.</p></div>
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 4,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 1,20 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: medimops, Berlin, Germania
Condizione: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Codice articolo M01492050040-V
Quantità: 3 disponibili
Da: medimops, Berlin, Germania
Condizione: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. Codice articolo M01492050040-G
Quantità: 1 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WO-9781492050049
Quantità: 15 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WO-9781492050049
Quantità: 15 disponibili
Quantità: 2 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Learning Spark: Lightning-Fast Data Analytics 1.4. Book. Codice articolo BBS-9781492050049
Quantità: 5 disponibili
Da: Rarewaves USA, OSWEGO, IL, U.S.A.
Paperback. Condizione: New. Data is getting bigger, arriving faster, and coming in varied formats-and it all needs to be processed at scale for analytics or machine learning. How can you process such varied data workloads efficiently? Enter Apache Spark. Updated to emphasize new features in Spark 2.4., this second edition shows data engineers and scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine-learning algorithms. Through discourse, code snippets, and notebooks, you'll be able to: Learn Python, SQL, Scala, or Java high-level APIs: DataFrames and Datasets Peek under the hood of the Spark SQL engine to understand Spark transformations and performance Inspect, tune, and debug your Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow Use open source Pandas framework Koalas and Spark for data transformation and feature engineering. Codice articolo LU-9781492050049
Quantità: Più di 20 disponibili
Da: SecondSale, Montgomery, IL, U.S.A.
Condizione: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00089955498
Quantità: 1 disponibili
Da: SecondSale, Montgomery, IL, U.S.A.
Condizione: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00085087939
Quantità: 3 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 35911240-n
Quantità: Più di 20 disponibili