This easy-to-use reference for TensorFlow 2 design patterns in Python will help you make informed decisions for various use cases. Author KC Tung addresses common topics and tasks in enterprise data science and machine learning practices rather than focusing on TensorFlow itself.
When and why would you feed training data as using NumPy or a streaming dataset? How would you set up cross-validations in the training process? How do you leverage a pretrained model using transfer learning? How do you perform hyperparameter tuning? Pick up this pocket reference and reduce the time you spend searching through options for your TensorFlow use cases.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
KC Tung is a cloud solution architect in Microsoft who specializes in designing and delivering machine learning and AI solutions in enterprise cloud architecture. He helps enterprise customers with use-case driven architecture, AI/ML model development/deployment in the cloud, and technology selection and integration best suited for their requirements. He is a Microsoft certified AI engineer and data engineer. He has a PhD in molecular biophysics from the University of Texas Southwestern Medical, and has spoken at the 2018 O&;Reilly AI Conference in San Francisco and the 2019 O&;Reilly Tensorflow World Conference in San Jose.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: BooksRun, Philadelphia, PA, U.S.A.
Paperback. Condizione: As New. 1. It's a preowned item in almost perfect condition. It has no visible cosmetic imperfections. May come without any shrink wrap; pages are clean and not marred by notes or folds of any kind. Codice articolo 1492089184-10-1
Quantità: 1 disponibili
Da: Bay State Book Company, North Smithfield, RI, U.S.A.
Condizione: good. The book is in good condition with all pages and cover intact, including the dust jacket if originally issued. The spine may show light wear. Pages may contain some notes or highlighting, and there might be a "From the library of" label. Boxed set packaging, shrink wrap, or included media like CDs may be missing. Codice articolo BSM.VTOK
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 42834307
Quantità: 7 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 42834307-n
Quantità: 7 disponibili
Da: Lakeside Books, Benton Harbor, MI, U.S.A.
Condizione: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Codice articolo OTF-S-9781492089186
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Tensorflow 2 Pocket Reference: Building and Deploying Machine Learning Models. Book. Codice articolo BBS-9781492089186
Quantità: 5 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WO-9781492089186
Quantità: 1 disponibili
Da: Rarewaves USA, OSWEGO, IL, U.S.A.
Paperback. Condizione: New. This easy-to-use reference for TensorFlow 2 design patterns in Python will help you make informed decisions for various use cases. Author KC Tung addresses common topics and tasks in enterprise data science and machine learning practices rather than focusing on TensorFlow itself.When and why would you feed training data as using NumPy or a streaming dataset? How would you set up cross-validations in the training process? How do you leverage a pretrained model using transfer learning? How do you perform hyperparameter tuning? Pick up this pocket reference and reduce the time you spend searching through options for your TensorFlow use cases.Understand best practices in TensorFlow model patterns and ML workflowsUse code snippets as templates in building TensorFlow models and workflowsSave development time by integrating prebuilt models in TensorFlow HubMake informed design choices about data ingestion, training paradigms, model saving, and inferencingAddress common scenarios such as model design style, data ingestion workflow, model training, and tuning. Codice articolo LU-9781492089186
Quantità: Più di 20 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2716030177824
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781492089186
Quantità: Più di 20 disponibili