Articoli correlati a A First Course in Probability

A First Course in Probability - Brossura

 
9781499201321: A First Course in Probability

Sinossi

The primary purpose of this book is to provide an introductory text for a one semester undergraduate course in probability. The only assumed background knowledge is that of calculus, which makes it suitable, not only for those following curricula in the mathematical sciences, but also for students whose future careers lie in diverse engineering fields, biological sciences, management science, among many others. The text covers all the probability concepts that are necessary for study in these areas and does so in a clear and methodical manner. Furthermore, the pedagogic approach that is adopted in this text, together with the more than 200 examples and worked exercises that are omnipresent and whose solutions are provided in great detail, enable students returning to school, after perhaps a brief period of time in industry, to master probability theory in a relatively short period of time. In chapter 1, trails, sample spaces, events, and the three probability axioms on which all of probability is based are introduced. From these concepts, conditional probability, independent events, the law of total probability and Bayes' rule are studied. Chapter 2 introduces combinatorics --- the art of counting. Permutations, with and without replacement, are studied as are combinations, again with and without replacement. The chapter concludes with an examination of sequences of Bernoulli trials. Random variables, both discrete and continuous, are studied in Chapter 3. Probability mass, probability density and cumulative distribution functions are introduced. We also study functions of a random variable and conditioned random variables. In Chapter 4, joint probability mass functions and joint cumulative distributions are introduced This is followed by an examination of conditional distributions for both discrete and continuous random variables. The chapter ends with the introduction of convolutions and sums of random variables. Expectations and higher moments are covered in Chapter 5. After introducing the basic definitions, we consider expectations of a random variable and then the expectation of jointly distributed random variables. This leads to the concept of covariance and correlation and to conditional expectation and variance. Probability generating functions and moment generating functions are examined as are maxima and minima of sets of independent random variables. Chapter 6 deals with probability distributions for discrete random variables. It includes the discrete uniform distribution, the Bernoulli, binomial, geometric, modified geometric, and negative binomial distribution, among others. In this chapter we also introduce the Poisson process and study its relationship with other distributions and its application to arrival and departure processes. Chapter 7 is perhaps the longest chapter in the book because of the great number of continuous distributions that are studied. These include wedge and triangular distributions, the exponential, normal, gamma and beta distributions. The Weibull distribution is studied in the context of reliability modeling. And finally, particular attention is paid to phase-type distributions due to the important role they play in systems modeling. The Markov and Chebychev inequalities and the Chernoff bound are introduced and compared in Chapter 8. The weak and strong laws of large numbers and the central limit theorem, perhaps one of the most important theorems in all of probability, are also examined in this chapter. The final chapter of the book deals with the theory of Markov chains. The basic concepts of discrete and continuous-time Markov chains and their underlying equations and properties are discussed. This chapter may be omitted from undergraduate courses since it requires some minimal knowledge of linear algebra. A PDF file containing detailed solutions to all the chapter-ending exercises is available from the author (billy@ncsu.edu).

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

William J. Stewart is professor of computer science at North Carolina State University, a position he has occupied since 1978. He obtained his doctorate at the Queen's University of Belfast, N. Ireland after which he moved to France to spend almost five years at the University of Rennes. He has published extensively in the areas of applied probability, Markov chains and numerical linear algebra. His homepage may be viewed at the URL: http://www4.ncsu.edu/~billy/

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

EUR 7,70 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781499508741: A First Course in Probability: Solutions Manual

Edizione in evidenza

ISBN 10:  1499508743 ISBN 13:  9781499508741
Casa editrice: CreateSpace Independent Publishi..., 2014
Brossura

Risultati della ricerca per A First Course in Probability

Foto dell'editore

Stewart, William J.
ISBN 10: 149920132X ISBN 13: 9781499201321
Nuovo Brossura
Print on Demand

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo I-9781499201321

Contatta il venditore

Compra nuovo

EUR 49,34
Convertire valuta
Spese di spedizione: EUR 7,70
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

William J. Stewart
ISBN 10: 149920132X ISBN 13: 9781499201321
Nuovo Paperback

Da: CitiRetail, Stevenage, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. The primary purpose of this book is to provide an introductory text for a one semester undergraduate course in probability. The only assumed background knowledge is that of calculus, which makes it suitable, not only for those following curricula in the mathematical sciences, but also for students whose future careers lie in diverse engineering fields, biological sciences, management science, among many others. The text covers all the probability concepts that are necessary for study in these areas and does so in a clear and methodical manner. Furthermore, the pedagogic approach that is adopted in this text, together with the more than 200 examples and worked exercises that are omnipresent and whose solutions are provided in great detail, enable students returning to school, after perhaps a brief period of time in industry, to master probability theory in a relatively short period of time. In chapter 1, trails, sample spaces, events, and the three probability axioms on which all of probability is based are introduced. From these concepts, conditional probability, independent events, the law of total probability and Bayes' rule are studied. Chapter 2 introduces combinatorics --- the art of counting. Permutations, with and without replacement, are studied as are combinations, again with and without replacement. The chapter concludes with an examination of sequences of Bernoulli trials. Random variables, both discrete and continuous, are studied in Chapter 3. Probability mass, probability density and cumulative distribution functions are introduced. We also study functions of a random variable and conditioned random variables. In Chapter 4, joint probability mass functions and joint cumulative distributions are introduced This is followed by an examination of conditional distributions for both discrete and continuous random variables. The chapter ends with the introduction of convolutions and sums of random variables. Expectations and higher moments are covered in Chapter 5. After introducing the basic definitions, we consider expectations of a random variable and then the expectation of jointly distributed random variables. This leads to the concept of covariance and correlation and to conditional expectation and variance. Probability generating functions and moment generating functions are examined as are maxima and minima of sets of independent random variables. Chapter 6 deals with probability distributions for discrete random variables. It includes the discrete uniform distribution, the Bernoulli, binomial, geometric, modified geometric, and negative binomial distribution, among others. In this chapter we also introduce the Poisson process and study its relationship with other distributions and its application to arrival and departure processes. Chapter 7 is perhaps the longest chapter in the book because of the great number of continuous distributions that are studied. These include wedge and triangular distributions, the exponential, normal, gamma and beta distributions. The Weibull distribution is studied in the context of reliability modeling. And finally, particular attention is paid to phase-type distributions due to the important role they play in systems modeling. The Markov and Chebychev inequalities and the Chernoff bound are introduced and compared in Chapter 8. The weak and strong laws of large numbers and the central limit theorem, perhaps one of the most important theorems in all of probability, are also examined in this chapter. The final chapter of the book deals with the theory of Markov chains. The basic concepts of discrete and continuous-time Markov chains and their underlying equations and properties are discussed. This chapter may be omitted from undergraduate courses since it requires some minimal knowledge of linear algebra. A PDF file containing detailed solutions to all the chapt Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9781499201321

Contatta il venditore

Compra nuovo

EUR 64,92
Convertire valuta
Spese di spedizione: EUR 34,70
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

William J Stewart
Editore: Createspace, 2014
ISBN 10: 149920132X ISBN 13: 9781499201321
Nuovo Paperback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 819. Codice articolo C9781499201321

Contatta il venditore

Compra nuovo

EUR 96,96
Convertire valuta
Spese di spedizione: EUR 12,77
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello