For many applications, including power generation, aerospace and the automobile industry, high temperature wear provides serious difficulties where two or more surfaces move or slide relative to one another. In aerospace, for example, demands for more powerful, efficient engines operating at ever higher temperatures, mean that conventional lubrication is no longer sufficient to prevent direct contact between metallic sliding surfaces, accelerating wear. However, one high temperature phenomenon observed to reduce metallic contact, and thus wear and friction, is the formation of 'glazes',essentially compacted oxide wear debris layers that sinter together to form wear resistant surfaces. This thesis studies the nature of wear encountered with four different combinations of Superalloys, slid together using a 'block-on-cylinder' configuration (Nimonic 80A and Incoloy MA956 as block / sample materials; Stellite 6 and Incoloy 800HT as cylinder / counterface materials) simulating car (automobile) engine 'valve-on-valve-seat' wear. Initially this study concentrates on the combined effects of sliding speed (either 0.314 m/s or 0.905 m/s, supplementing previous testing at 0.654 m/s) and temperature (between room temperature and 750°C) - by altering either or both of these variables, the nature of the wear process can be radically altered, encouraging or suppressing wear protective oxide or 'glaze' layer formation. Extensive characterisation is conducted of the 'glaze' layers during this study, using a wide range of tools including optical microscopy, SEM, EDX (spot, mapping and Autopoint), XRD (including Glancing Angle) and micro-hardness. On selected samples, TEM and STM show these 'glaze' layers to be nano-structured (nano-crystalline), with an estimated grain size of as little as 2 to 10 nm.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Book by Inman Ian A
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,25 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 0,54 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781581123210
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781581123210
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781581123210_new
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Compacted Oxide Layer Formation under Conditions of Limited Debris Retention at the Wear Interface during High Temperature Sliding Wear of Superalloys 1.46. Book. Codice articolo BBS-9781581123210
Quantità: 5 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 694. Codice articolo C9781581123210
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 4354737-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 4354737-n
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9781581123210
Quantità: 10 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9781581123210
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - For many applications, including power generation, aerospace and the automobile industry, high temperature wear provides serious difficulties where two or more surfaces move or slide relative to one another. In aerospace, for example, demands for more powerful, efficient engines operating at ever higher temperatures, mean that conventional lubrication is no longer sufficient to prevent direct contact between metallic sliding surfaces, accelerating wear. However, one high temperature phenomenon observed to reduce metallic contact, and thus wear and friction, is the formation of 'glazes',essentially compacted oxide wear debris layers that sinter together to form wear resistant surfaces. This thesis studies the nature of wear encountered with four different combinations of Superalloys, slid together using a 'block-on-cylinder' configuration (Nimonic 80A and Incoloy MA956 as block / sample materials; Stellite 6 and Incoloy 800HT as cylinder / counterface materials) simulating car (automobile) engine 'valve-on-valve-seat' wear. Initially this study concentrates on the combined effects of sliding speed (either 0.314 m/s or 0.905 m/s, supplementing previous testing at 0.654 m/s) and temperature (between room temperature and 750°C) - by altering either or both of these variables, the nature of the wear process can be radically altered, encouraging or suppressing wear protective oxide or 'glaze' layer formation. Extensive characterisation is conducted of the 'glaze' layers during this study, using a wide range of tools including optical microscopy, SEM, EDX (spot, mapping and Autopoint), XRD (including Glancing Angle) and micro-hardness. On selected samples, TEM and STM show these 'glaze' layers to be nano-structured (nano-crystalline), with an estimated grain size of as little as 2 to 10 nm. Codice articolo 9781581123210
Quantità: 1 disponibili