This book, together with specially prepared online material freely accessible to our readers, provides a complete introduction to Machine Learning, the technology that enables computational systems to adaptively improve their performance with experience accumulated from the observed data. Such techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. In addition, our readers are given free access to online e-Chapters that we update with the current trends in Machine Learning, such as deep learning and support vector machines. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. What we have emphasized are the necessary fundamentals that give any student of learning from data a solid foundation. The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Da: BooksRun, Philadelphia, PA, U.S.A.
Condizione: Good. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience. Codice articolo 1600490069-11-1
Quantità: 1 disponibili
Da: HPB-Red, Dallas, TX, U.S.A.
Hardcover. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_455132152
Quantità: 1 disponibili
Da: Bay State Book Company, North Smithfield, RI, U.S.A.
Condizione: very_good. Codice articolo BSM.10BYO
Quantità: 1 disponibili
Da: HPB-Emerald, Dallas, TX, U.S.A.
Hardcover. Condizione: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority! Codice articolo S_461044006
Quantità: 1 disponibili
Da: Better World Books, Mishawaka, IN, U.S.A.
Condizione: Very Good. Pages intact with possible writing/highlighting. Binding strong with minor wear. Dust jackets/supplements may not be included. Stock photo provided. Product includes identifying sticker. Better World Books: Buy Books. Do Good. Codice articolo 4926090-6
Quantità: 1 disponibili
Da: Textbooks_Source, Columbia, MO, U.S.A.
hardcover. Condizione: Good. Ships same day or next business day! UPS shipping available (Priority Mail for AK/HI/APO/PO Boxes). Used sticker and some writing and/or highlighting. Used books may not include working access code. Used books will not include dust jackets. Codice articolo 001316327U
Quantità: 12 disponibili