Collaborative Filtering Recommender Systems discusses a wide variety of the recommender choices available and their implications, providing both practitioners and researchers with an introduction to the important issues underlying recommenders and current best practices for addressing these issues.
Recommender systems are an important part of the information and e-commerce ecosystem. They represent a powerful method for enabling users to filter through large information and product spaces. Nearly two decades of research on collaborative filtering have led to a varied set of algorithms and a rich collection of tools for evaluating their performance. Research in the field is moving in the direction of a richer understanding of how recommender technology may be embedded in specific domains.
The differing personalities exhibited by different recommender algorithms show that recommendation is not a one-size-fits-all problem. Specific tasks, information needs, and item domains represent unique problems for recommenders, and design and evaluation of recommenders needs to be done based on the user tasks to be supported. Effective deployments must begin with careful analysis of prospective users and their goals. Based on this analysis, system designers have a host of options for the choice of algorithm and for its embedding in the surrounding user experience.
This paper discusses a wide variety of the choices available and their implications, aiming to provide both practicioners and researchers with an introduction to the important issues underlying recommenders and current best practices for addressing these issues.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Book by Ekstrand Michael D Riedl John T Konstan Joseph A
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,49 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 5,98 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo IQ-9781601984425
Quantità: 15 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 12451119-n
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 12451119
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 12451119-n
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 12451119
Quantità: 1 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 191. Codice articolo C9781601984425
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 106 pages. 8.98x6.14x0.39 inches. In Stock. Codice articolo x-1601984421
Quantità: 2 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781601984425
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Inhaltsverzeichnis1: Introduction 2: Collaborative Filtering Methods 3: Evaluating Recommender Systems 4: Building the Data Set 5: User Information Needs 6: User Experience 7: Conclusion and Resources. References.Klappentext. Codice articolo 448142473
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781601984425_new
Quantità: Più di 20 disponibili