Articoli correlati a Synopses for Massive Data: Samples, Histograms, Wavelets,...

Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches (Foundations and Trends (R) in Databases) - Brossura

 
9781601985163: Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches (Foundations and Trends (R) in Databases)

Sinossi

Synopses for Massive Data describes basic principles and recent developments in building approximate synopses (that is, lossy, compressed representations) of massive data. Such synopses enable approximate query processing, in which the user's query is executed against the synopsis instead of the original data.

The book focuses on the four main families of synopses: random samples, histograms, wavelets, and sketches. A random sample comprises a ""representative"" subset of the data values of interest, obtained via a stochastic mechanism. Samples can be quick to obtain, and can be used to approximately answer a wide range of queries.

A histogram summarizes a data set by grouping the data values into subsets, or ""buckets"", and then, for each bucket, computing a small set of summary statistics that can be used to approximately reconstruct the data in the bucket. Histograms have been extensively studied and have been incorporated into the query optimizers of virtually all commercial relational DBMSs. Wavelet-based synopses were originally developed in the context of image and signal processing. The data set is viewed as a set of M elements in a vector-i.e., as a function defined on the set {0,1,2,. ,M?1}-and the wavelet transform of this function is found as a weighted sum of wavelet ""basis functions"". The weights, or coefficients, can then be ""thresholded"", e.g., by eliminating coefficients that are close to zero in magnitude. The remaining small set of coefficients serves as the synopsis. Wavelets are good at capturing features of the data set at various scales. Sketch summaries are particularly well suited to streaming data. Linear sketches, for example, view a numerical data set as a vector or matrix, and multiply the data by a fixed matrix. Such sketches are massively parallelizable. They can accommodate streams of transactions in which data is both inserted and removed.

Sketches have also been used successfully to estimate the answer to COUNT DISTINCT queries, a notoriously hard problem. Synopses for Massive Data describes and compares the different synopsis methods. It also discusses the use of AQP within research systems, and discusses challenges and future directions. It is essential reading for anyone working with, or doing research on massive data.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,06 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 3,41 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Risultati della ricerca per Synopses for Massive Data: Samples, Histograms, Wavelets,...

Immagini fornite dal venditore

Minos Garofalakis, Graham Cormode, Chris Jermaine, Peter J. Haas
Editore: now publishers Inc, US, 2011
ISBN 10: 1601985169 ISBN 13: 9781601985163
Nuovo Paperback

Da: Rarewaves USA, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Synopses for Massive Data describes basic principles and recent developments in building approximate synopses (that is, lossy, compressed representations) of massive data. Such synopses enable approximate query processing, in which the user's query is executed against the synopsis instead of the original data.The book focuses on the four main families of synopses: random samples, histograms, wavelets, and sketches. A random sample comprises a ""representative"" subset of the data values of interest, obtained via a stochastic mechanism. Samples can be quick to obtain, and can be used to approximately answer a wide range of queries.A histogram summarizes a data set by grouping the data values into subsets, or ""buckets"", and then, for each bucket, computing a small set of summary statistics that can be used to approximately reconstruct the data in the bucket. Histograms have been extensively studied and have been incorporated into the query optimizers of virtually all commercial relational DBMSs. Wavelet-based synopses were originally developed in the context of image and signal processing. The data set is viewed as a set of M elements in a vector-i.e., as a function defined on the set {0,1,2, ,M?1}-and the wavelet transform of this function is found as a weighted sum of wavelet ""basis functions"". The weights, or coefficients, can then be ""thresholded"", e.g., by eliminating coefficients that are close to zero in magnitude. The remaining small set of coefficients serves as the synopsis. Wavelets are good at capturing features of the data set at various scales. Sketch summaries are particularly well suited to streaming data. Linear sketches, for example, view a numerical data set as a vector or matrix, and multiply the data by a fixed matrix. Such sketches are massively parallelizable. They can accommodate streams of transactions in which data is both inserted and removed.Sketches have also been used successfully to estimate the answer to COUNT DISTINCT queries, a notoriously hard problem. Synopses for Massive Data describes and compares the different synopsis methods. It also discusses the use of AQP within research systems, and discusses challenges and future directions. It is essential reading for anyone working with, or doing research on massive data. Codice articolo LU-9781601985163

Contatta il venditore

Compra nuovo

EUR 114,04
Convertire valuta
Spese di spedizione: EUR 3,41
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Minos Garofalakis, Graham Cormode, Chris Jermaine, Peter J. Haas
Editore: now publishers Inc, US, 2011
ISBN 10: 1601985169 ISBN 13: 9781601985163
Nuovo Paperback

Da: Rarewaves USA United, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Synopses for Massive Data describes basic principles and recent developments in building approximate synopses (that is, lossy, compressed representations) of massive data. Such synopses enable approximate query processing, in which the user's query is executed against the synopsis instead of the original data.The book focuses on the four main families of synopses: random samples, histograms, wavelets, and sketches. A random sample comprises a ""representative"" subset of the data values of interest, obtained via a stochastic mechanism. Samples can be quick to obtain, and can be used to approximately answer a wide range of queries.A histogram summarizes a data set by grouping the data values into subsets, or ""buckets"", and then, for each bucket, computing a small set of summary statistics that can be used to approximately reconstruct the data in the bucket. Histograms have been extensively studied and have been incorporated into the query optimizers of virtually all commercial relational DBMSs. Wavelet-based synopses were originally developed in the context of image and signal processing. The data set is viewed as a set of M elements in a vector-i.e., as a function defined on the set {0,1,2, ,M?1}-and the wavelet transform of this function is found as a weighted sum of wavelet ""basis functions"". The weights, or coefficients, can then be ""thresholded"", e.g., by eliminating coefficients that are close to zero in magnitude. The remaining small set of coefficients serves as the synopsis. Wavelets are good at capturing features of the data set at various scales. Sketch summaries are particularly well suited to streaming data. Linear sketches, for example, view a numerical data set as a vector or matrix, and multiply the data by a fixed matrix. Such sketches are massively parallelizable. They can accommodate streams of transactions in which data is both inserted and removed.Sketches have also been used successfully to estimate the answer to COUNT DISTINCT queries, a notoriously hard problem. Synopses for Massive Data describes and compares the different synopsis methods. It also discusses the use of AQP within research systems, and discusses challenges and future directions. It is essential reading for anyone working with, or doing research on massive data. Codice articolo LU-9781601985163

Contatta il venditore

Compra nuovo

EUR 116,62
Convertire valuta
Spese di spedizione: EUR 3,41
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Cormode, Graham; Garofalakis, Minos; Haas, Peter J.
Editore: Now Publishers, 2011
ISBN 10: 1601985169 ISBN 13: 9781601985163
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 16120778

Contatta il venditore

Compra usato

EUR 108,29
Convertire valuta
Spese di spedizione: EUR 17,06
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Cormode, Graham; Garofalakis, Minos; Haas, Peter J.
Editore: Now Publishers, 2011
ISBN 10: 1601985169 ISBN 13: 9781601985163
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 16120778-n

Contatta il venditore

Compra nuovo

EUR 108,29
Convertire valuta
Spese di spedizione: EUR 17,06
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Graham Cormode
Editore: Now Publishers, 2011
ISBN 10: 1601985169 ISBN 13: 9781601985163
Nuovo PAP
Print on Demand

Da: PBShop.store US, Wood Dale, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781601985163

Contatta il venditore

Compra nuovo

EUR 125,04
Convertire valuta
Spese di spedizione: EUR 1,20
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Cormode, Graham; Garofalakis, Minos; Haas, Peter J.
Editore: Now Publishers, 2011
ISBN 10: 1601985169 ISBN 13: 9781601985163
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 16120778-n

Contatta il venditore

Compra nuovo

EUR 110,65
Convertire valuta
Spese di spedizione: EUR 17,35
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Cormode, Graham; Garofalakis, Minos; Haas, Peter J.
Editore: Now Publishers, 2011
ISBN 10: 1601985169 ISBN 13: 9781601985163
Antico o usato Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 16120778

Contatta il venditore

Compra usato

EUR 110,65
Convertire valuta
Spese di spedizione: EUR 17,35
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Cormode, Graham|Garofalakis, Minos|Haas, Peter J.
Editore: Now Publishers Inc, 2012
ISBN 10: 1601985169 ISBN 13: 9781601985163
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Describes basic principles and recent developments in building approximate synopses (that is, lossy, compressed representations) of massive data. The book focuses on the four main families of synopses: random samples, histograms, wavelets, and sketches. Codice articolo 448142494

Contatta il venditore

Compra nuovo

EUR 118,79
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Graham Cormode
Editore: now publishers Inc, 2011
ISBN 10: 1601985169 ISBN 13: 9781601985163
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 931. Codice articolo C9781601985163

Contatta il venditore

Compra nuovo

EUR 116,02
Convertire valuta
Spese di spedizione: EUR 13,81
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Graham Cormode
Editore: Now Publishers, 2011
ISBN 10: 1601985169 ISBN 13: 9781601985163
Nuovo PAP
Print on Demand

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781601985163

Contatta il venditore

Compra nuovo

EUR 123,98
Convertire valuta
Spese di spedizione: EUR 6,08
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 4 copie di questo libro

Vedi tutti i risultati per questo libro