Articoli correlati a Grokking Deep Reinforcement Learning

Grokking Deep Reinforcement Learning - Brossura

 
9781617295454: Grokking Deep Reinforcement Learning

Sinossi

Grokking Deep Reinforcement Learning uses engaging exercises to teach you how to build deep learning systems. This book combines annotated Python code with intuitive explanations to explore DRL techniques. You’ll see how algorithms function and learn to develop your own DRL agents using evaluative feedback.

Summary
We all learn through trial and error. We avoid the things that cause us to experience pain and failure. We embrace and build on the things that give us reward and success. This common pattern is the foundation of deep reinforcement learning: building machine learning systems that explore and learn based on the responses of the environment. Grokking Deep Reinforcement Learning introduces this powerful machine learning approach, using examples, illustrations, exercises, and crystal-clear teaching. You'll love the perfectly paced teaching and the clever, engaging writing style as you dig into this awesome exploration of reinforcement learning fundamentals, effective deep learning techniques, and practical applications in this emerging field.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
We learn by interacting with our environment, and the rewards or punishments we experience guide our future behavior. Deep reinforcement learning brings that same natural process to artificial intelligence, analyzing results to uncover the most efficient ways forward. DRL agents can improve marketing campaigns, predict stock performance, and beat grand masters in Go and chess.

About the book
Grokking Deep Reinforcement Learning uses engaging exercises to teach you how to build deep learning systems. This book combines annotated Python code with intuitive explanations to explore DRL techniques. You’ll see how algorithms function and learn to develop your own DRL agents using evaluative feedback.

What's inside
    An introduction to reinforcement learning
    DRL agents with human-like behaviors
    Applying DRL to complex situations

About the reader
For developers with basic deep learning experience.

About the author
Miguel Morales works on reinforcement learning at Lockheed Martin and is an instructor for the Georgia Institute of Technology’s Reinforcement Learning and Decision Making course.

Table of Contents

1 Introduction to deep reinforcement learning

2 Mathematical foundations of reinforcement learning

3 Balancing immediate and long-term goals

4 Balancing the gathering and use of information

5 Evaluating agents’ behaviors

6 Improving agents’ behaviors

7 Achieving goals more effectively and efficiently

8 Introduction to value-based deep reinforcement learning

9 More stable value-based methods

10 Sample-efficient value-based methods

11 Policy-gradient and actor-critic methods

12 Advanced actor-critic methods

13 Toward artificial general intelligence

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sugli autori

Miguel Morales is a Senior Software Engineer at Lockheed Martin, Missile and Fire Control-Autonomous Systems. He is also a faculty member at Georgia Institute of Technology where he works as an Instructional Associate for the Reinforcement Learning and Decision Making graduate course. Miguel has worked for numerous other educational and technology companies including Udacity, AT&T, Cisco, and HPE.



Miguel Morales is a Staff Research Engineer at Lockheed Martin, Missile and Fire Control-Autonomous Systems. He is also a faculty member at Georgia Institute of Technology where he works as an Instructional Associate for the Reinforcement Learning and Decision Making graduate course. Miguel has worked for numerous other educational and technology companies including Udacity, AT&T, Cisco, and HPE.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: discreto
The item might be beaten up but...
Visualizza questo articolo

GRATIS per la spedizione in U.S.A.

Destinazione, tempi e costi

Risultati della ricerca per Grokking Deep Reinforcement Learning

Foto dell'editore

Morales, Miguel
Editore: Manning (edition ), 2020
ISBN 10: 1617295450 ISBN 13: 9781617295454
Antico o usato Paperback

Da: BooksRun, Philadelphia, PA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Fair. The item might be beaten up but readable. May contain markings or highlighting, as well as stains, bent corners, or any other major defect, but the text is not obscured in any way. Codice articolo 1617295450-7-1

Contatta il venditore

Compra usato

EUR 26,34
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Morales Miguel
Editore: Manning, 2020
ISBN 10: 1617295450 ISBN 13: 9781617295454
Nuovo Brossura

Da: Goodvibes Books, STAFFORD, TX, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. New Book. Codice articolo 1617295450-SBX

Contatta il venditore

Compra nuovo

EUR 39,68
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Miguel Morales
Editore: Simon and Schuster, 2020
ISBN 10: 1617295450 ISBN 13: 9781617295454
Nuovo Brossura

Da: INDOO, Avenel, NJ, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 9781617295454

Contatta il venditore

Compra nuovo

EUR 39,69
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Morales, Miguel
ISBN 10: 1617295450 ISBN 13: 9781617295454
Antico o usato Brossura

Da: Better World Books, Mishawaka, IN, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Used book that is in almost brand-new condition. Codice articolo 52234489-6

Contatta il venditore

Compra usato

EUR 39,75
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Morales, Miguel
Editore: Simon and Schuster, 2020
ISBN 10: 1617295450 ISBN 13: 9781617295454
Antico o usato Brossura

Da: INDOO, Avenel, NJ, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread copy in mint condition. Codice articolo SS9781617295454

Contatta il venditore

Compra usato

EUR 39,96
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Morales, Miguel
ISBN 10: 1617295450 ISBN 13: 9781617295454
Antico o usato Soft cover

Da: Else Fine Booksellers, Tacoma, WA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Soft cover. Condizione: Very Good. Foreword by Charles Isbell, Jr. Light surface wear, heavy creasing to one lower page corner, else fine. Codice articolo 005881

Contatta il venditore

Compra usato

EUR 35,52
Convertire valuta
Spese di spedizione: EUR 4,74
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Morales, Miguel
Editore: Manning, 2020
ISBN 10: 1617295450 ISBN 13: 9781617295454
Antico o usato paperback

Da: Isle Books, Layton, UT, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: Good. good condition, pages are clean and free of markings, light wear to corners and edges, ships same or next business day. Codice articolo 082080624021

Contatta il venditore

Compra usato

EUR 44,38
Convertire valuta
Spese di spedizione: EUR 3,44
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Miguel Morales
Editore: Pearson Education, 2021
ISBN 10: 1617295450 ISBN 13: 9781617295454
Nuovo PAP

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo PB-9781617295454

Contatta il venditore

Compra nuovo

EUR 41,43
Convertire valuta
Spese di spedizione: EUR 6,76
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 15 disponibili

Aggiungi al carrello

Foto dell'editore

Miguel Morales
ISBN 10: 1617295450 ISBN 13: 9781617295454
Nuovo Paperback

Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. Written for developers with some understanding of deep learning algorithms. Experience with reinforcement learning is not required. Grokking Deep Reinforcement Learning introduces this powerful machine learning approach, using examples, illustrations, exercises, and crystal-clear teaching. You'll love the perfectly paced teaching and the clever, engaging writing style as you dig into this awesome exploration of reinforcement learning fundamentals, effective deep learning techniques, and practical applications in this emerging field. We all learn through trial and error. We avoid the things that cause us to experience pain and failure. We embrace and build on the things that give us reward and success. This common pattern is the foundation of deep reinforcement learning: building machine learning systems that explore and learn based on the responses of the environment. Foundational reinforcement learning concepts and methods The most popular deep reinforcement learning agents solving high-dimensional environments Cutting-edge agents that emulate human-like behavior and techniques for artificial general intelligence Deep reinforcement learning is a form of machine learning in which AI agents learn optimal behavior on their own from raw sensory input. The system perceives the environment, interprets the results of its past decisions and uses this information to optimize its behavior for maximum long-term return. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781617295454

Contatta il venditore

Compra nuovo

EUR 57,26
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Miguel Morales
Editore: Manning Publications, US, 2021
ISBN 10: 1617295450 ISBN 13: 9781617295454
Nuovo Paperback

Da: Rarewaves.com USA, London, LONDO, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Written for developers with some understanding of deep learning algorithms. Experience with reinforcement learning is not required.   Grokking Deep Reinforcement Learning introduces this powerful machine learning approach, using examples, illustrations, exercises, and crystal-clear teaching. You'll love the perfectly paced teaching and the clever, engaging writing style as you dig into this awesome exploration of reinforcement learning fundamentals, effective deep learning techniques, and practical applications in this emerging field.   We all learn through trial and error. We avoid the things that cause us to experience pain and failure. We embrace and build on the things that give us reward and success. This common pattern is the foundation of deep reinforcement learning: building machine learning systems that explore and learn based on the responses of the environment.   . Foundational reinforcement learning concepts and methods . The most popular deep reinforcement learning agents solving high-dimensional environments . Cutting-edge agents that emulate human-like behavior and techniques for artificial general intelligence   Deep reinforcement learning is a form of machine learning in which AI agents learn optimal behavior on their own from raw sensory input. The system perceives the environment, interprets the results of its past decisions and uses this information to optimize its behavior for maximum long-term return. Codice articolo LU-9781617295454

Contatta il venditore

Compra nuovo

EUR 58,20
Convertire valuta
Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 18 copie di questo libro

Vedi tutti i risultati per questo libro