Articoli correlati a Data Without Labels: Practical Unsupervised Machine...

Data Without Labels: Practical Unsupervised Machine Learning - Brossura

 
9781617298721: Data Without Labels: Practical Unsupervised Machine Learning

Sinossi

Discover all-practical implementations of the key algorithms and models for handling unlabeled data. Full of case studies demonstrating how to apply each technique to real-world problems.

In Data Without Labels you’ll learn:

• Fundamental building blocks and concepts of machine learning and unsupervised learning
• Data cleaning for structured and unstructured data like text and images
• Clustering algorithms like K-means, hierarchical clustering, DBSCAN, Gaussian Mixture Models, and Spectral clustering
• Dimensionality reduction methods like Principal Component Analysis (PCA), SVD, Multidimensional scaling, and t-SNE
• Association rule algorithms like aPriori, ECLAT, SPADE
• Unsupervised time series clustering, Gaussian Mixture models, and statistical methods
• Building neural networks such as GANs and autoencoders
• Dimensionality reduction methods like Principal Component Analysis and multidimensional scaling
• Association rule algorithms like aPriori, ECLAT, and SPADE
• Working with Python tools and libraries like sci-kit learn, numpy, Pandas, matplotlib, Seaborn, Keras, TensorFlow, and Flask
• How to interpret the results of unsupervised learning
• Choosing the right algorithm for your problem
• Deploying unsupervised learning to production
• Maintenance and refresh of an ML solution

Data Without Labels introduces mathematical techniques, key algorithms, and Python implementations that will help you build machine learning models for unannotated data. You’ll discover hands-off and unsupervised machine learning approaches that can still untangle raw, real-world datasets and support sound strategic decisions for your business.

Don’t get bogged down in theory—the book bridges the gap between complex math and practical Python implementations, covering end-to-end model development all the way through to production deployment. You’ll discover the business use cases for machine learning and unsupervised learning, and access insightful research papers to complete your knowledge.

Foreword by Ravi Gopalakrishnan.

About the technology

Generative AI, predictive algorithms, fraud detection, and many other analysis tasks rely on cheap and plentiful unlabeled data. Machine learning on data without labels—or unsupervised learning—turns raw text, images, and numbers into insights about your customers, accurate computer vision, and high-quality datasets for training AI models. This book will show you how.

About the book

Data Without Labels is a comprehensive guide to unsupervised learning, offering a deep dive into its mathematical foundations, algorithms, and practical applications. It presents practical examples from retail, aviation, and banking using fully annotated Python code. You’ll explore core techniques like clustering and dimensionality reduction along with advanced topics like autoencoders and GANs. As you go, you’ll learn where to apply unsupervised learning in business applications and discover how to develop your own machine learning models end-to-end.

What's inside

• Master unsupervised learning algorithms
• Real-world business applications
• Curate AI training datasets
• Explore autoencoders and GANs applications

About the reader

Intended for data science professionals. Assumes knowledge of Python and basic machine learning.

About the author

Vaibhav Verdhan is a seasoned data science professional with extensive experience working on data science projects in a large pharmaceutical company.

Table of Contents

Part 1
1 Introduction to machine learning
2 Clustering techniques
3 Dimensionality reduction
Part 2
4 Association rules
5 Clustering
6 Dimensionality reduction
7 Unsupervised learning for text data
Part 3
8 Deep learning: The foundational concepts
9 Autoencoders
10 Generative adversarial networks, generative AI, and ChatGPT
11 End-to-end model deployment
Appendix A Mathematical foundations

Get a free eBook (PDF or ePub) from Manning as well as access to the online liveBook format (and its AI assistant that will answer your questions in any language) when you purchase the print book.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Vaibhav Verdhan is a seasoned data science professional with rich experience across geographies and domains. He has led multiple engagements in machine learning and artificial intelligence. A leading industry expert, Vaibhav is a regular speaker at conferences and meet-ups and mentors students and professionals. Currently he resides in Ireland where he works as a principal data scientist.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 2,27 per la spedizione in U.S.A.

Destinazione, tempi e costi

Risultati della ricerca per Data Without Labels: Practical Unsupervised Machine...

Immagini fornite dal venditore

Verdhan, Vaibhav; Gopalakrishnan, Ravi (FRW)
Editore: Manning, 2025
ISBN 10: 1617298727 ISBN 13: 9781617298721
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44436096-n

Contatta il venditore

Compra nuovo

EUR 43,69
Convertire valuta
Spese di spedizione: EUR 2,27
In U.S.A.
Destinazione, tempi e costi

Quantità: 11 disponibili

Aggiungi al carrello

Foto dell'editore

Vaibhav Verdhan
ISBN 10: 1617298727 ISBN 13: 9781617298721
Nuovo

Da: INDOO, Avenel, NJ, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 9781617298721

Contatta il venditore

Compra nuovo

EUR 46,04
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Verdhan, Vaibhav; Gopalakrishnan, Ravi (FRW)
Editore: Manning, 2025
ISBN 10: 1617298727 ISBN 13: 9781617298721
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 44436096

Contatta il venditore

Compra usato

EUR 44,28
Convertire valuta
Spese di spedizione: EUR 2,27
In U.S.A.
Destinazione, tempi e costi

Quantità: 11 disponibili

Aggiungi al carrello

Foto dell'editore

Verdhan, Vaibhav
ISBN 10: 1617298727 ISBN 13: 9781617298721
Antico o usato

Da: INDOO, Avenel, NJ, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread copy in mint condition. Codice articolo SS9781617298721

Contatta il venditore

Compra usato

EUR 46,63
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Verdhan, Vaibhav
Editore: Manning, 2025
ISBN 10: 1617298727 ISBN 13: 9781617298721
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781617298721

Contatta il venditore

Compra nuovo

EUR 58,51
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Vaibhav Verdhan
Editore: Manning Publications, US, 2025
ISBN 10: 1617298727 ISBN 13: 9781617298721
Nuovo Paperback

Da: Rarewaves USA, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Discover all-practical implementations of the key algorithms and models for handling unlabeled data. Full of case studies demonstrating how to apply each technique to real-world problems. In  Models and Algorithms for Unsupervised Learning you'll learn: Fundamental building blocks and concepts of machine learning and unsupervised learningData cleaning for structured and unstructured data like text and imagesUnsupervised time series clustering, Gaussian Mixture models, and statistical methodsBuilding neural networks such as GANs and autoencodersHow to interpret the results of unsupervised learningChoosing the right algorithm for your problemDeploying unsupervised learning to productionBusiness use cases for machine learning and unsupervised learning Models and Algorithms for Unsupervised Learning introduces mathematical techniques, key algorithms, and Python implementations that will help you build machine learning models for unannotated data. You'll discover hands-off and unsupervised machine learning approaches that can still untangle raw, real-world datasets and support sound strategic decisions for your business. Don't get bogged down in theory-the book bridges the gap between complex math and practical Python implementations, covering end-to-end model development all the way through to production deployment. about the technology Unsupervised learning and machine learning algorithms draw inferences from unannotated data sets. The self-organizing approach to machine learning is great for spotting patterns a human might miss. about the book Models and Algorithms for Unsupervised Learning teaches you to apply a full spectrum of machine learning algorithms to raw data. You'll master everything from kmeans and hierarchical clustering, to advanced neural networks like GANs and Restricted Boltzmann Machines. You'll learn the business use case for different models, and master best practices for structured, text, and image data. Each new algorithm is introduced with a case study for retail, aviation, banking, and more-and you'll develop a Python solution to fix each of these real-world problems. At the end of each chapter, you'll find quizzes, practice datasets, and links to research papers to help you lock in what you've learned and expand your knowledge. Codice articolo LU-9781617298721

Contatta il venditore

Compra nuovo

EUR 58,99
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Foto dell'editore

Vaibhav Verdhan
ISBN 10: 1617298727 ISBN 13: 9781617298721
Nuovo Paperback

Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. Discover all-practical implementations of the key algorithms and models for handling unlabeled data. Full of case studies demonstrating how to apply each technique to real-world problems. In Models and Algorithms for Unsupervised Learning you'll learn: Fundamental building blocks and concepts of machine learning and unsupervised learningData cleaning for structured and unstructured data like text and imagesUnsupervised time series clustering, Gaussian Mixture models, and statistical methodsBuilding neural networks such as GANs and autoencodersHow to interpret the results of unsupervised learningChoosing the right algorithm for your problemDeploying unsupervised learning to productionBusiness use cases for machine learning and unsupervised learning Models and Algorithms for Unsupervised Learning introduces mathematical techniques, key algorithms, and Python implementations that will help you build machine learning models for unannotated data. You'll discover hands-off and unsupervised machine learning approaches that can still untangle raw, real-world datasets and support sound strategic decisions for your business. Don't get bogged down in theorythe book bridges the gap between complex math and practical Python implementations, covering end-to-end model development all the way through to production deployment. about the technology Unsupervised learning and machine learning algorithms draw inferences from unannotated data sets. The self-organizing approach to machine learning is great for spotting patterns a human might miss. about the book Models and Algorithms for Unsupervised Learning teaches you to apply a full spectrum of machine learning algorithms to raw data. You'll master everything from kmeans and hierarchical clustering, to advanced neural networks like GANs and Restricted Boltzmann Machines. You'll learn the business use case for different models, and master best practices for structured, text, and image data. Each new algorithm is introduced with a case study for retail, aviation, banking, and moreand you'll develop a Python solution to fix each of these real-world problems. At the end of each chapter, you'll find quizzes, practice datasets, and links to research papers to help you lock in what you've learned and expand your knowledge. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781617298721

Contatta il venditore

Compra nuovo

EUR 63,56
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Verdhan, Vaibhav
Editore: Manning, 2025
ISBN 10: 1617298727 ISBN 13: 9781617298721
Nuovo paperback

Da: Russell Books, Victoria, BC, Canada

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: New. Special order direct from the distributor. Codice articolo ING9781617298721

Contatta il venditore

Compra nuovo

EUR 51,06
Convertire valuta
Spese di spedizione: EUR 17,21
Da: Canada a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Verdhan, Vaibhav; Gopalakrishnan, Ravi (FRW)
Editore: Manning, 2025
ISBN 10: 1617298727 ISBN 13: 9781617298721
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44436096-n

Contatta il venditore

Compra nuovo

EUR 55,01
Convertire valuta
Spese di spedizione: EUR 17,24
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 11 disponibili

Aggiungi al carrello

Foto dell'editore

Verdhan, Vaibhav
Editore: Manning Publications, 2025
ISBN 10: 1617298727 ISBN 13: 9781617298721
Nuovo Brossura Prima edizione

Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 2025. 1st Edition. paperback. . . . . . Codice articolo V9781617298721

Contatta il venditore

Compra nuovo

EUR 70,37
Convertire valuta
Spese di spedizione: EUR 10,50
Da: Irlanda a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 8 copie di questo libro

Vedi tutti i risultati per questo libro