Articoli correlati a Approximability of Optimization Problems through Adiabatic...

Approximability of Optimization Problems through Adiabatic Quantum Computation - Brossura

 
9781627055567: Approximability of Optimization Problems through Adiabatic Quantum Computation

Sinossi

The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrodinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is large enough, then the system remains close to its ground state. An AQC algorithm uses the adiabatic theorem to approximate the ground state of the final Hamiltonian that corresponds to the solution of the given optimization problem. In this book, we investigate the computational simulation of AQC algorithms applied to the MAX-SAT problem. A symbolic analysis of the AQC solution is given in order to understand the involved computational complexity of AQC algorithms. This approach can be extended to other combinatorial optimization problems and can be used for the classical simulation of an AQC algorithm where a Hamiltonian problem is constructed. This construction requires the computation of a sparse matrix of dimension 2n × 2n, by means of tensor products, where n is the dimension of the quantum system. Also, a general scheme to design AQC algorithms is proposed, based on a natural correspondence between optimization Boolean variables and quantum bits. Combinatorial graph problems are in correspondence with pseudo-Boolean maps that are reduced in polynomial time to quadratic maps. Finally, the relation among NP-hard problems is investigated, as well as its logical representability, and is applied to the design of AQC algorithms. It is shown that every monadic second-order logic (MSOL) expression has associated pseudo-Boolean maps that can be obtained by expanding the given expression, and also can be reduced to quadratic forms.

Table of Contents: Preface / Acknowledgments / Introduction / Approximability of NP-hard Problems / Adiabatic Quantum Computing / Efficient Hamiltonian Construction / AQC for Pseudo-Boolean Optimization / A General Strategy to Solve NP-Hard Problems / Conclusions / Bibliography / Authors' Biographies

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

L'autore

CU UAEM Valle de Chalco, Universidad Autónoma del Estado de México, México

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: buono
Good
Visualizza questo articolo

EUR 28,84 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783031013911: Approximability of Optimization Problems through Adiabatic Quantum Computation

Edizione in evidenza

ISBN 10:  3031013913 ISBN 13:  9783031013911
Casa editrice: Springer, 2014
Brossura

Risultati della ricerca per Approximability of Optimization Problems through Adiabatic...

Foto dell'editore

Cruz-Santos, William, Morales-Luna, Guillermo
ISBN 10: 1627055568 ISBN 13: 9781627055567
Antico o usato paperback

Da: Mispah books, Redhill, SURRE, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: Good. Good. book. Codice articolo ERICA82916270555683

Contatta il venditore

Compra usato

EUR 118,80
Convertire valuta
Spese di spedizione: EUR 28,84
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello