Articoli correlati a Extreme Value Theory-based Methods for Visual Recognition

Extreme Value Theory-based Methods for Visual Recognition - Brossura

 
9781627057004: Extreme Value Theory-based Methods for Visual Recognition

Sinossi

A common feature of many approaches to modeling sensory statistics is an emphasis on capturing the "average." From early representations in the brain, to highly abstracted class categories in machine learning for classification tasks, central-tendency models based on the Gaussian distribution are a seemingly natural and obvious choice for modeling sensory data. However, insights from neuroscience, psychology, and computer vision suggest an alternate strategy: preferentially focusing representational resources on the extremes of the distribution of sensory inputs. The notion of treating extrema near a decision boundary as features is not necessarily new, but a comprehensive statistical theory of recognition based on extrema is only now just emerging in the computer vision literature. This book begins by introducing the statistical Extreme Value Theory (EVT) for visual recognition. In contrast to central-tendency modeling, it is hypothesized that distributions near decision boundaries form a more powerful model for recognition tasks by focusing coding resources on data that are arguably the most diagnostic features. EVT has several important properties: strong statistical grounding, better modeling accuracy near decision boundaries than Gaussian modeling, the ability to model asymmetric decision boundaries, and accurate prediction of the probability of an event beyond our experience. The second part of the book uses the theory to describe a new class of machine learning algorithms for decision making that are a measurable advance beyond the state-of-the-art. This includes methods for post-recognition score analysis, information fusion, multi-attribute spaces, and calibration of supervised machine learning algorithms.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: molto buono
Fast Shipping - Safe and Secure...
Visualizza questo articolo

EUR 64,03 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783031006890: Extreme Value Theory-Based Methods for Visual Recognition

Edizione in evidenza

ISBN 10:  3031006895 ISBN 13:  9783031006890
Casa editrice: Springer, 2017
Brossura

Risultati della ricerca per Extreme Value Theory-based Methods for Visual Recognition

Foto dell'editore

Scheirer, Walter J.
ISBN 10: 1627057005 ISBN 13: 9781627057004
Antico o usato paperback

Da: suffolkbooks, Center moriches, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: Very Good. Fast Shipping - Safe and Secure 7 days a week! Codice articolo 3TWOWA001MVQ

Contatta il venditore

Compra usato

EUR 35,88
Convertire valuta
Spese di spedizione: EUR 64,03
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello