Articoli correlati a Numerical Integration of Space Fractional Partial Differenti...

Numerical Integration of Space Fractional Partial Differential Equations: Applications from Classical Integer Pdes - Brossura

 
9781681732091: Numerical Integration of Space Fractional Partial Differential Equations: Applications from Classical Integer Pdes

Sinossi

Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as: Vol 1: Introduction to Algorithms and Computer Coding in R Vol 2: Applications from Classical Integer PDEs. Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative. In the second volume, the emphasis is on applications of SFPDEs developed mainly through the extension of classical integer PDEs to SFPDEs. The example applications are: Fractional diffusion equation with Dirichlet, Neumann and Robin boundary conditions Fisher-Kolmogorov SFPDE Burgers SFPDE Fokker-Planck SFPDE Burgers-Huxley SFPDE Fitzhugh-Nagumo SFPDE. These SFPDEs were selected because they are integer first order in time and integer second order in space. The variation in the spatial derivative from order two (parabolic) to order one (first order hyperbolic) demonstrates the effect of the spatial fractional order ?? with 1 = ?? = 2. All of the example SFPDEs are one dimensional in Cartesian coordinates. Extensions to higher dimensions and other coordinate systems, in principle, follow from the examples in this second volume. The examples start with a statement of the integer PDEs that are then extended to SFPDEs. The format of each chapter is the same as in the first volume. The R routines can be downloaded and executed on a modest computer (R is readily available from the Internet).

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: molto buono
Fast Shipping - Safe and Secure...
Visualizza questo articolo

EUR 64,20 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781681732718: Numerical Integration of Space Fractional Partial Differential Equations: Applications from Classical Integer Pdes

Edizione in evidenza

ISBN 10:  1681732718 ISBN 13:  9781681732718
Casa editrice: Morgan & Claypool, 2017
Rilegato

Risultati della ricerca per Numerical Integration of Space Fractional Partial Differenti...

Foto dell'editore

Salehi, Younes,Schiesser, William E.
ISBN 10: 1681732092 ISBN 13: 9781681732091
Antico o usato paperback

Da: suffolkbooks, Center moriches, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: Very Good. Fast Shipping - Safe and Secure 7 days a week! Codice articolo 3TWOWA001OQ6

Contatta il venditore

Compra usato

EUR 14,82
Convertire valuta
Spese di spedizione: EUR 64,20
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello