Articoli correlati a Federated Learning

Federated Learning - Rilegato

 
9781681736990: Federated Learning

Al momento non sono disponibili copie per questo codice ISBN.

Sinossi

This book shows how federated machine learning allows multiple data owners to collaboratively train and use a shared prediction model while keeping all the local training data private. Traditional machine learning approaches need to combine all data at one location, typically a data center, which may very well violate the laws on user privacy and data confidentiality. Today, many parts of the world demand that technology companies treat user data carefully according to user-privacy laws. The European Union's General Data Protection Regulation (GDPR) is a prime example.

In this book, we describe how federated machine learning addresses this problem with novel solutions combining distributed machine learning, cryptography and security, and incentive mechanism design based on economic principles and game theory. We explain different types of privacy-preserving machine learning solutions and their technological backgrounds, and highlight some representative practical use cases. We show how federated learning can become the foundation of next-generation machine learning that caters to technological and societal needs for responsible AI development and application.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreMorgan & Claypool
  • Data di pubblicazione2019
  • ISBN 10 1681736993
  • ISBN 13 9781681736990
  • RilegaturaCopertina rigida
  • LinguaInglese
  • Numero di pagine207
  • Contatto del produttorenon disponibile

(nessuna copia disponibile)

Cerca:



Inserisci un desiderata

Non riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!

Inserisci un desiderata

Altre edizioni note dello stesso titolo

9781681736976: Federated Learning

Edizione in evidenza

ISBN 10:  1681736977 ISBN 13:  9781681736976
Casa editrice: Morgan & Claypool, 2019
Brossura