Articoli correlati a Graph Representation Learning

Graph Representation Learning - Brossura

 
9781681739632: Graph Representation Learning

Sinossi

<p><b>This book is a foundational guide to graph representation learning, including state-of-the art advances, and introduces the highly successful graph neural network (GNN) formalism.</b></p> <p>Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.</p> <p>It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs -- a nascent but quickly growing subset of graph representation learning.</p>

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreMorgan & Claypool
  • Data di pubblicazione2020
  • ISBN 10 1681739631
  • ISBN 13 9781681739632
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero di pagine141
  • Contatto del produttorenon disponibile

Compra usato

Condizioni: buono
Befriedigend/Good: Durchschnittlich...
Visualizza questo articolo

EUR 4,00 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783031004605: Graph Representation Learning

Edizione in evidenza

ISBN 10:  3031004604 ISBN 13:  9783031004605
Casa editrice: Springer, 2020
Brossura

Risultati della ricerca per Graph Representation Learning

Foto dell'editore

Hamilton, William L
Editore: Morgan & Claypool, 2020
ISBN 10: 1681739631 ISBN 13: 9781681739632
Antico o usato Brossura

Da: medimops, Berlin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. Codice articolo M01681739631-G

Contatta il venditore

Compra usato

EUR 44,73
Convertire valuta
Spese di spedizione: EUR 4,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Hamilton, William L.
Editore: Morgan & Claypool 0, 2020
ISBN 10: 1681739631 ISBN 13: 9781681739632
Antico o usato paperback

Da: dsmbooks, Liverpool, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: Good. Good. book. Codice articolo D8S0-3-M-1681739631-3

Contatta il venditore

Compra usato

EUR 275,28
Convertire valuta
Spese di spedizione: EUR 29,21
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello