This book contains a fast-paced introduction to data-related tasks in preparation for training models on datasets. It presents a step-by-step, Python-based code sample that uses the kNN algorithm to manage a model on a dataset.
Chapter One begins with an introduction to datasets and issues that can arise, followed by Chapter Two on outliers and anomaly detection. The next chapter explores ways for handling missing data and invalid data, and Chapter Four demonstrates how to train models with classification algorithms. Chapter 5 introduces visualization toolkits, such as Sweetviz, Skimpy, Matplotlib, and Seaborn, along with some simple Python-based code samples that render charts and graphs. An appendix includes some basics on using awk. Companion files with code, datasets, and figures are available for downloading.
Features:
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Campesato Oswald :
Oswald Campesato (San Francisco, CA) is an adjunct instructor at UC-Santa Cruz and specializes in Deep Learning, NLP, Android, and Python. He is the author/co-author of over forty-five books including Data Science Fundamentals Pocket Primer, Python 3 for Machine Learning, and the Python Pocket Primer (Mercury Learning and Information).
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 12,49 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 7,75 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Books From California, Simi Valley, CA, U.S.A.
paperback. Condizione: Very Good. Codice articolo mon0003583793
Quantità: 1 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781683929529
Quantità: Più di 20 disponibili
Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condizione: New. 2023. 1st Edition. paperback. . . . . . Codice articolo V9781683929529
Quantità: 15 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Campesato Oswald : Oswald Campesato (San Francisco, CA) is an adjunct instructor at UC-Santa Cruz and specializes in Deep Learning, NLP, Android, and Python. He is the author/co-author of over forty-five books including Data Science Fundamentals P. Codice articolo 905018140
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781683929529_new
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 45776676
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 45776676-n
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book contains a fast-paced introduction to data-related tasks in preparation for training models on datasets. It presents a step-by-step, Python-based code sample that uses the kNN algorithm to manage a model on a dataset. Chapter One begins with an introduction to datasets and issues that can arise, followed by Chapter Two on outliers and anomaly detection. The next chapter explores ways for handling missing data and invalid data, and Chapter Four demonstrates how to train models with classification algorithms. Chapter 5 introduces visualization toolkits, such as Sweetviz, Skimpy, Matplotlib, and Seaborn, along with some simple Python-based code samples that render charts and graphs. An appendix includes some basics on using awk. Companion files with code, datasets, and figures are available for downloading. Features: Covers extensive topics related to cleaning datasets and working with models Includes Python-based code samples and a separate chapter on Matplotlib and Seaborn Features companion files with source code, datasets, and figures from the book 368 pp. Englisch. Codice articolo 9781683929529
Quantità: 2 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 45776676-n
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 45776676
Quantità: Più di 20 disponibili