Articoli correlati a The Art of Machine Learning: A Hands-On Guide to Machine...

The Art of Machine Learning: A Hands-On Guide to Machine Learning with R - Brossura

 
9781718502109: The Art of Machine Learning: A Hands-On Guide to Machine Learning with R

Sinossi

Learn to expertly apply a range of machine learning methods to real data with this practical guide.

Packed with real datasets and practical examples, The Art of Machine Learning will help you develop an intuitive understanding of how and why ML methods work, without the need for advanced math.

As you work through the book, you’ll learn how to implement a range of powerful ML techniques, starting with the k-Nearest Neighbors (k-NN) method and random forests, and moving on to gradient boosting, support vector machines (SVMs), neural networks, and more.

With the aid of real datasets, you’ll delve into regression models through the use of a bike-sharing dataset, explore decision trees by leveraging New York City taxi data, and dissect parametric methods with baseball player stats. You’ll also find expert tips for avoiding common problems, like handling “dirty” or unbalanced data, and how to troubleshoot pitfalls.

You’ll also explore:

  • How to deal with large datasets and techniques for dimension reduction
  • Details on how the Bias-Variance Trade-off plays out in specific ML methods
  • Models based on linear relationships, including ridge and LASSO regression
  • Real-world image and text classification and how to handle time series data

Machine learning is an art that requires careful tuning and tweaking. With The Art of Machine Learning as your guide, you’ll master the underlying principles of ML that will empower you to effectively use these models, rather than simply provide a few stock actions with limited practical use.

Requirements: A basic understanding of graphs and charts and familiarity with the R programming language

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Norman Matloff is an award-winning professor at the University of California, Davis. Matloff has a PhD in mathematics from UCLA and is the author of The Art of Debugging with GDB, DDD, and Eclipse and The Art of R Programming (both from No Starch Press).

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: molto buono
Very Good Condition - May show...
Visualizza questo articolo

EUR 13,36 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 1,20 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Risultati della ricerca per The Art of Machine Learning: A Hands-On Guide to Machine...

Foto dell'editore

Matloff, Norman
Editore: No Starch Press, 2024
ISBN 10: 1718502109 ISBN 13: 9781718502109
Antico o usato paperback

Da: Bellwetherbooks, McKeesport, PA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: Very Good. Very Good Condition - May show some limited signs of wear and may have a remainder mark. Pages and dust cover are intact and not marred by notes or highlighting. Codice articolo NS-PB-VG-1718502109

Contatta il venditore

Compra usato

EUR 13,59
Convertire valuta
Spese di spedizione: EUR 13,36
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Matloff, Norman
ISBN 10: 1718502109 ISBN 13: 9781718502109
Antico o usato Brossura

Da: Better World Books: West, Reno, NV, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Good. Used book that is in clean, average condition without any missing pages. Codice articolo 50097211-75

Contatta il venditore

Compra usato

EUR 16,77
Convertire valuta
Spese di spedizione: EUR 17,17
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Norman Matloff
ISBN 10: 1718502109 ISBN 13: 9781718502109
Nuovo PAP

Da: PBShop.store US, Wood Dale, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo DB-9781718502109

Contatta il venditore

Compra nuovo

EUR 36,69
Convertire valuta
Spese di spedizione: EUR 1,20
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Norman Matloff
Editore: No Starch Press,US, US, 2024
ISBN 10: 1718502109 ISBN 13: 9781718502109
Nuovo Paperback

Da: Rarewaves.com UK, London, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Computing. Machine learning without advanced math! This book presents a serious, practical look at machine learning, preparing you for valuable insights on your own data. The Art of Machine Learning is packed with real dataset examples and sophisticated advice on how to make full use of powerful machine learning methods. Readers will need only an intuitive grasp of charts, graphs, and the slope of a line, as well as familiarity with the R programming language. You'll become skilled in a range of machine learning methods, starting with the simple k-Nearest Neighbours method (k-NN), then on to random forests, gradient boosting, linear/logistic models, support vector machines, the LASSO, and neural networks. Final chapters introduce text and image classification, as well as time series. You'll learn not only how to use machine learning methods, but also why these methods work, providing the strong foundational background you'll need in practice. Additional features: How to avoid common problems, such as dealing with 'dirty' data and factor variables with large numbers of levels; A look at typical misconceptions, such as dealing with unbalanced data; Exploration of the famous Bias-Variance Tradeoff, central to machine learning, and how it plays out in practice for each machine learning method; Dozens of illustrative examples involving real datasets of varying size and field of application; Standard R packages are used throughout, with a simple wrapper interface to provide convenient access. After finishing this book, you will be well equipped to start applying machine learning techniques to your own datasets. Codice articolo LU-9781718502109

Contatta il venditore

Compra nuovo

EUR 39,31
Convertire valuta
Spese di spedizione: EUR 2,29
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Norman Matloff
Editore: No Starch Press,US, US, 2024
ISBN 10: 1718502109 ISBN 13: 9781718502109
Nuovo Paperback

Da: Rarewaves USA, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Computing. Machine learning without advanced math! This book presents a serious, practical look at machine learning, preparing you for valuable insights on your own data. The Art of Machine Learning is packed with real dataset examples and sophisticated advice on how to make full use of powerful machine learning methods. Readers will need only an intuitive grasp of charts, graphs, and the slope of a line, as well as familiarity with the R programming language. You'll become skilled in a range of machine learning methods, starting with the simple k-Nearest Neighbours method (k-NN), then on to random forests, gradient boosting, linear/logistic models, support vector machines, the LASSO, and neural networks. Final chapters introduce text and image classification, as well as time series. You'll learn not only how to use machine learning methods, but also why these methods work, providing the strong foundational background you'll need in practice. Additional features: How to avoid common problems, such as dealing with 'dirty' data and factor variables with large numbers of levels; A look at typical misconceptions, such as dealing with unbalanced data; Exploration of the famous Bias-Variance Tradeoff, central to machine learning, and how it plays out in practice for each machine learning method; Dozens of illustrative examples involving real datasets of varying size and field of application; Standard R packages are used throughout, with a simple wrapper interface to provide convenient access. After finishing this book, you will be well equipped to start applying machine learning techniques to your own datasets. Codice articolo LU-9781718502109

Contatta il venditore

Compra nuovo

EUR 40,06
Convertire valuta
Spese di spedizione: EUR 3,42
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Norman Matloff
Editore: No Starch Press,US, 2024
ISBN 10: 1718502109 ISBN 13: 9781718502109
Nuovo Paperback / softback

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 209. Codice articolo B9781718502109

Contatta il venditore

Compra nuovo

EUR 37,46
Convertire valuta
Spese di spedizione: EUR 7,05
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Matloff, Norman
Editore: No Starch Press, 2024
ISBN 10: 1718502109 ISBN 13: 9781718502109
Nuovo Brossura

Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 2024. paperback. . . . . . Codice articolo V9781718502109

Contatta il venditore

Compra nuovo

EUR 42,91
Convertire valuta
Spese di spedizione: EUR 2,00
Da: Irlanda a: Italia
Destinazione, tempi e costi

Quantità: 15 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Norman Matloff
Editore: No Starch Press,US, US, 2024
ISBN 10: 1718502109 ISBN 13: 9781718502109
Nuovo Paperback

Da: Rarewaves USA United, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Computing. Machine learning without advanced math! This book presents a serious, practical look at machine learning, preparing you for valuable insights on your own data. The Art of Machine Learning is packed with real dataset examples and sophisticated advice on how to make full use of powerful machine learning methods. Readers will need only an intuitive grasp of charts, graphs, and the slope of a line, as well as familiarity with the R programming language. You'll become skilled in a range of machine learning methods, starting with the simple k-Nearest Neighbours method (k-NN), then on to random forests, gradient boosting, linear/logistic models, support vector machines, the LASSO, and neural networks. Final chapters introduce text and image classification, as well as time series. You'll learn not only how to use machine learning methods, but also why these methods work, providing the strong foundational background you'll need in practice. Additional features: How to avoid common problems, such as dealing with 'dirty' data and factor variables with large numbers of levels; A look at typical misconceptions, such as dealing with unbalanced data; Exploration of the famous Bias-Variance Tradeoff, central to machine learning, and how it plays out in practice for each machine learning method; Dozens of illustrative examples involving real datasets of varying size and field of application; Standard R packages are used throughout, with a simple wrapper interface to provide convenient access. After finishing this book, you will be well equipped to start applying machine learning techniques to your own datasets. Codice articolo LU-9781718502109

Contatta il venditore

Compra nuovo

EUR 41,49
Convertire valuta
Spese di spedizione: EUR 3,42
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Matloff, Norman
Editore: No Starch Press, 2024
ISBN 10: 1718502109 ISBN 13: 9781718502109
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 26389920746

Contatta il venditore

Compra nuovo

EUR 37,80
Convertire valuta
Spese di spedizione: EUR 7,69
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Norman Matloff
ISBN 10: 1718502109 ISBN 13: 9781718502109
Nuovo PAP

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo DB-9781718502109

Contatta il venditore

Compra nuovo

EUR 39,59
Convertire valuta
Spese di spedizione: EUR 6,02
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 30 copie di questo libro

Vedi tutti i risultati per questo libro