Explore powerful R packages to create predictive models using ensemble methods
Ensemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy.
Hands-On Ensemble Learning with R begins with the important statistical resampling methods. You will then walk through the central trilogy of ensemble techniques – bagging, random forest, and boosting – then you'll learn how they can be used to provide greater accuracy on large datasets using popular R packages. You will learn how to combine model predictions using different machine learning algorithms to build ensemble models. In addition to this, you will explore how to improve the performance of your ensemble models.
By the end of this book, you will have learned how machine learning algorithms can be combined to reduce common problems and build simple efficient ensemble models with the help of real-world examples.
This book is for you if you are a data scientist or machine learning developer who wants to implement machine learning techniques by building ensemble models with the power of R. You will learn how to combine different machine learning algorithms to perform efficient data processing. Basic knowledge of machine learning techniques and programming knowledge of R would be an added advantage.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 21,18 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Zubal-Books, Since 1961, Cleveland, OH, U.S.A.
Condizione: New. 526 pp., paperback, new. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Codice articolo ZB1316477
Quantità: 1 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781788624145
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781788624145
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Hands-On Ensemble Learning with R 1.42. Book. Codice articolo BBS-9781788624145
Quantità: 5 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781788624145_new
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. This book introduces you to the concept of ensemble learning and demonstrates how different machine learning algorithms can be combined to build efficient machine learning models. Use R to implement the popular trilogy of ensemble techniques, i.e. bagging, . Codice articolo 448328646
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9781788624145
Quantità: 10 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 808. Codice articolo C9781788624145
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 370283223
Quantità: 4 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering. Codice articolo 9781788624145
Quantità: 1 disponibili