Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem
Key Features
Book Description
Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems.
The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples.
The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP).
By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems.
What you will learn
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Dipanjan (DJ) Sarkar is a Data Scientist at Intel, leveraging data science, machine learning, and deep learning to build large-scale intelligent systems. He holds a master of technology degree with specializations in Data Science and Software Engineering. He has been an analytics practitioner for several years now, specializing in machine learning, NLP, statistical methods, and deep learning. He is passionate about education and also acts as a Data Science Mentor at various organizations like Springboard, helping people learn data science. He is also a key contributor and editor for Towards Data Science, a leading online journal on AI and Data Science. He has also authored several books on R, Python, machine learning, NLP, and deep learning.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 33731814-n
Quantità: Più di 20 disponibili
Da: World of Books (was SecondSale), Montgomery, IL, U.S.A.
Condizione: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00089689957
Quantità: 1 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Condizione: New. Hands-On Transfer Learning with Python (Paperback or Softback). Codice articolo BBS-9781788831307
Quantità: 5 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2912160182265
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781788831307
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 33731814
Quantità: Più di 20 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781788831307
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781788831307
Quantità: Più di 20 disponibili
Da: Rarewaves.com USA, London, LONDO, Regno Unito
Paperback. Condizione: New. Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystemKey FeaturesBuild deep learning models with transfer learning principles in Pythonimplement transfer learning to solve real-world research problemsPerform complex operations such as image captioning neural style transferBook DescriptionTransfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP).By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems.What you will learnSet up your own DL environment with graphics processing unit (GPU) and Cloud support Delve into transfer learning principles with ML and DL modelsExplore various DL architectures, including CNN, LSTM, and capsule networks Learn about data and network representation and loss functionsGet to grips with models and strategies in transfer learning Walk through potential challenges in building complex transfer learning models from scratch Explore real-world research problems related to computer vision and audio analysis Understand how transfer learning can be leveraged in NLPWho this book is forHands-On Transfer Learning with Python is for data scientists, machine learning engineers, analysts and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems. Basic proficiency in machine learning and Python is required. Codice articolo LU-9781788831307
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9781788831307
Quantità: 10 disponibili