Implement neural network models in R 3.5 using TensorFlow, Keras, and MXNet
Key Features
Book Description
Deep learning is a powerful subset of machine learning that is very successful in domains such as computer vision and natural language processing (NLP). This second edition of R Deep Learning Essentials will open the gates for you to enter the world of neural networks by building powerful deep learning models using the R ecosystem.
This book will introduce you to the basic principles of deep learning and teach you to build a neural network model from scratch. As you make your way through the book, you will explore deep learning libraries, such as Keras, MXNet, and TensorFlow, and create interesting deep learning models for a variety of tasks and problems, including structured data, computer vision, text data, anomaly detection, and recommendation systems. You'll cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud. In the concluding chapters, you will learn about the theoretical concepts of deep learning projects, such as model optimization, overfitting, and data augmentation, together with other advanced topics.
By the end of this book, you will be fully prepared and able to implement deep learning concepts in your research work or projects.
What you will learn
Who this book is for
This second edition of R Deep Learning Essentials is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. Fundamental understanding of the R language is necessary to get the most out of this book.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Mark Hodnett is a data scientist with over 20 years of industry experience in software development, business intelligence systems, and data science. He has worked in a variety of industries, including CRM systems, retail loyalty, IoT systems, and accountancy. He holds a master's in data science and an MBA. He works in Cork, Ireland, as a senior data scientist with AltViz. Joshua F. Wiley is a lecturer at Monash University, conducting quantitative research on sleep, stress, and health. He earned his Ph.D. from the University of California, Los Angeles and completed postdoctoral training in primary care and prevention. In statistics and data science, Joshua focuses on biostatistics and is interested in reproducible research and graphical displays of data and statistical models. He develops or co-develops a number of R packages including varian, a package to conduct Bayesian scale-location structural equation models, and MplusAutomation, a popular package that links R to the commercial Mplus software.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 6,21 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781788992893
Quantità: Più di 20 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781788992893
Quantità: Più di 20 disponibili
Da: Zubal-Books, Since 1961, Cleveland, OH, U.S.A.
Condizione: New. Second Edition, 367 pp., paperback, new. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Codice articolo ZB1317398
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781788992893_new
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. This book demonstrates how to use deep Learning in R for machine learning, image classification, and natural language processing. It covers topics such as convolutional networks, recurrent neural networks, transfer learning and deep learning in the cloud. B. Codice articolo 448329751
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 666. Codice articolo C9781788992893
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9781788992893
Quantità: 10 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 370283586
Quantità: 4 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Implement neural network models in R 3.5 using TensorFlow, Keras, and MXNet Key Features Use R 3.5 for building deep learning models for computer vision and text Apply deep learning techniques in cloud for large-scale processing Build, train, and optimize neural network models on a range of datasets Book Description Deep learning is a powerful subset of machine learning that is very successful in domains such as computer vision and natural language processing (NLP). This second edition of R Deep Learning Essentials will open the gates for you to enter the world of neural networks by building powerful deep learning models using the R ecosystem. This book will introduce you to the basic principles of deep learning and teach you to build a neural network model from scratch. As you make your way through the book, you will explore deep learning libraries, such as Keras, MXNet, and TensorFlow, and create interesting deep learning models for a variety of tasks and problems, including structured data, computer vision, text data, anomaly detection, and recommendation systems. You'll cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud. In the concluding chapters, you will learn about the theoretical concepts of deep learning projects, such as model optimization, overfitting, and data augmentation, together with other advanced topics. By the end of this book, you will be fully prepared and able to implement deep learning concepts in your research work or projects. What you will learn Build shallow neural network prediction models Prevent models from overfitting the data to improve generalizability Explore techniques for finding the best hyperparameters for deep learning models Create NLP models using Keras and TensorFlow in R Use deep learning for computer vision tasks Implement deep learning tasks, such as NLP, recommendation systems, and autoencoders Who this book is for This second edition of R Deep Learning Essentials is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. Fundamental understanding of the R language is necessary to get the most out of this book. Codice articolo 9781788992893
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2912160182933
Quantità: Più di 20 disponibili