Articoli correlati a Hands-On GPU Programming with Python and CUDA: Explore...

Hands-On GPU Programming with Python and CUDA: Explore high-performance parallel computing with CUDA - Brossura

 
9781788993913: Hands-On GPU Programming with Python and CUDA: Explore high-performance parallel computing with CUDA

Sinossi

Build GPU-accelerated high performing applications with Python 2.7, CUDA 9, and open source libraries such as PyCUDA and scikit-cuda. We recommend the use of Python 2.7 as this version has stable support across all libraries used in this book.

Key Features

  • Get to grips with GPU programming tools such as PyCUDA, scikit-cuda, and Nsight
  • Explore CUDA libraries such as cuBLAS, cuFFT, and cuSolver
  • Apply GPU programming to modern data science applications

Book Description

GPU programming is the technique of offloading intensive tasks running on the CPU for faster computing. Hands-On GPU Programming with Python and CUDA will help you discover ways to develop high performing Python apps combining the power of Python and CUDA.

This book will help you hit the ground running-you'll start by learning how to apply Amdahl's law, use a code profiler to identify bottlenecks in your Python code, and set up a GPU programming environment. You'll then see how to query a GPU's features and copy arrays of data to and from its memory. As you make your way through the book, you'll run your code directly on the GPU and write full blown GPU kernels and device functions in CUDA C. You'll even get to grips with profiling GPU code and fully test and debug your code using Nsight IDE. Furthermore, the book covers some well-known NVIDIA libraries such as cuFFT and cuBLAS.

With a solid background in place, you'll be able to develop your very own GPU-based deep neural network from scratch, and explore advanced topics such as warp shuffling, dynamic parallelism, and PTX assembly. Finally, you'll touch up on topics and applications like AI, graphics, and blockchain.

By the end of this book, you'll be confident in solving problems related to data science and high-performance computing with GPU programming.

What you will learn

  • Write effective and efficient GPU kernels and device functions
  • Work with libraries such as cuFFT, cuBLAS, and cuSolver
  • Debug and profile your code with Nsight and Visual Profiler
  • Apply GPU programming to data science problems
  • Build a GPU-based deep neural network from scratch
  • Explore advanced GPU hardware features such as warp shuffling

Who this book is for

This book is for developers and data scientists who want to learn the basics of effective GPU programming to improve performance using Python code. Familiarity with mathematics and physics concepts along with some experience with Python and any C-based programming language will be helpful.

Table of Contents

  1. Why GPU Programming?
  2. Setting Up Your GPU Programming Environment
  3. Getting Started with PyCUDA
  4. Kernels, Threads, Blocks, and Grids
  5. Streams, Events, Contexts, and Concurrency
  6. Debugging and Profiling Your CUDA Code
  7. Using the CUDA Libraries with Scikit-CUDA Draft complete
  8. The CUDA Device Function Libraries and Thrust
  9. Implementing a Deep Neural Network
  10. Working with Compiled GPU Code
  11. Performance Optimization in CUDA
  12. Where to Go from Here

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,02 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 7,66 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Risultati della ricerca per Hands-On GPU Programming with Python and CUDA: Explore...

Foto dell'editore

Tuomanen, Dr. Brian
Editore: Packt Publishing, 2018
ISBN 10: 1788993918 ISBN 13: 9781788993913
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781788993913

Contatta il venditore

Compra nuovo

EUR 47,35
Convertire valuta
Spese di spedizione: EUR 7,66
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Dr. Brian Tuomanen
Editore: Packt Publishing Limited, 2018
ISBN 10: 1788993918 ISBN 13: 9781788993913
Nuovo PAP
Print on Demand

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781788993913

Contatta il venditore

Compra nuovo

EUR 49,57
Convertire valuta
Spese di spedizione: EUR 6,02
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tuomanen, Dr Brian
ISBN 10: 1788993918 ISBN 13: 9781788993913
Nuovo Paperback or Softback

Da: BargainBookStores, Grand Rapids, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback or Softback. Condizione: New. Hands-On Gpu Programming with Python and Cuda 1.18. Book. Codice articolo BBS-9781788993913

Contatta il venditore

Compra nuovo

EUR 46,96
Convertire valuta
Spese di spedizione: EUR 11,49
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Tuomanen, Dr. Brian
Editore: Packt Publishing, 2018
ISBN 10: 1788993918 ISBN 13: 9781788993913
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781788993913_new

Contatta il venditore

Compra nuovo

EUR 48,87
Convertire valuta
Spese di spedizione: EUR 10,29
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dr. Brian Tuomanen
ISBN 10: 1788993918 ISBN 13: 9781788993913
Nuovo Paperback

Da: Rarewaves.com UK, London, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Build real-world applications with Python 2.7, CUDA 9, and CUDA 10. We suggest the use of Python 2.7 over Python 3.x, since Python 2.7 has stable support across all the libraries we use in this book.Key FeaturesExpand your background in GPU programming-PyCUDA, scikit-cuda, and NsightEffectively use CUDA libraries such as cuBLAS, cuFFT, and cuSolverApply GPU programming to modern data science applicationsBook DescriptionHands-On GPU Programming with Python and CUDA hits the ground running: you'll start by learning how to apply Amdahl's Law, use a code profiler to identify bottlenecks in your Python code, and set up an appropriate GPU programming environment. You'll then see how to "query" the GPU's features and copy arrays of data to and from the GPU's own memory.As you make your way through the book, you'll launch code directly onto the GPU and write full blown GPU kernels and device functions in CUDA C. You'll get to grips with profiling GPU code effectively and fully test and debug your code using Nsight IDE. Next, you'll explore some of the more well-known NVIDIA libraries, such as cuFFT and cuBLAS.With a solid background in place, you will now apply your new-found knowledge to develop your very own GPU-based deep neural network from scratch. You'll then explore advanced topics, such as warp shuffling, dynamic parallelism, and PTX assembly. In the final chapter, you'll see some topics and applications related to GPU programming that you may wish to pursue, including AI, graphics, and blockchain.By the end of this book, you will be able to apply GPU programming to problems related to data science and high-performance computing.What you will learnLaunch GPU code directly from PythonWrite effective and efficient GPU kernels and device functionsUse libraries such as cuFFT, cuBLAS, and cuSolverDebug and profile your code with Nsight and Visual ProfilerApply GPU programming to datascience problemsBuild a GPU-based deep neuralnetwork from scratchExplore advanced GPU hardware features, such as warp shufflingWho this book is forHands-On GPU Programming with Python and CUDA is for developers and data scientists who want to learn the basics of effective GPU programming to improve performance using Python code. You should have an understanding of first-year college or university-level engineering mathematics and physics, and have some experience with Python as well as in any C-based programming language such as C, C++, Go, or Java. Codice articolo LU-9781788993913

Contatta il venditore

Compra nuovo

EUR 57,59
Convertire valuta
Spese di spedizione: EUR 2,29
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tuomanen, Dr. Brian
Editore: Packt Publishing, 2018
ISBN 10: 1788993918 ISBN 13: 9781788993913
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 34762398-n

Contatta il venditore

Compra nuovo

EUR 44,64
Convertire valuta
Spese di spedizione: EUR 17,02
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dr. Brian Tuomanen
ISBN 10: 1788993918 ISBN 13: 9781788993913
Nuovo Paperback

Da: Rarewaves USA, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Build real-world applications with Python 2.7, CUDA 9, and CUDA 10. We suggest the use of Python 2.7 over Python 3.x, since Python 2.7 has stable support across all the libraries we use in this book.Key FeaturesExpand your background in GPU programming-PyCUDA, scikit-cuda, and NsightEffectively use CUDA libraries such as cuBLAS, cuFFT, and cuSolverApply GPU programming to modern data science applicationsBook DescriptionHands-On GPU Programming with Python and CUDA hits the ground running: you'll start by learning how to apply Amdahl's Law, use a code profiler to identify bottlenecks in your Python code, and set up an appropriate GPU programming environment. You'll then see how to "query" the GPU's features and copy arrays of data to and from the GPU's own memory.As you make your way through the book, you'll launch code directly onto the GPU and write full blown GPU kernels and device functions in CUDA C. You'll get to grips with profiling GPU code effectively and fully test and debug your code using Nsight IDE. Next, you'll explore some of the more well-known NVIDIA libraries, such as cuFFT and cuBLAS.With a solid background in place, you will now apply your new-found knowledge to develop your very own GPU-based deep neural network from scratch. You'll then explore advanced topics, such as warp shuffling, dynamic parallelism, and PTX assembly. In the final chapter, you'll see some topics and applications related to GPU programming that you may wish to pursue, including AI, graphics, and blockchain.By the end of this book, you will be able to apply GPU programming to problems related to data science and high-performance computing.What you will learnLaunch GPU code directly from PythonWrite effective and efficient GPU kernels and device functionsUse libraries such as cuFFT, cuBLAS, and cuSolverDebug and profile your code with Nsight and Visual ProfilerApply GPU programming to datascience problemsBuild a GPU-based deep neuralnetwork from scratchExplore advanced GPU hardware features, such as warp shufflingWho this book is forHands-On GPU Programming with Python and CUDA is for developers and data scientists who want to learn the basics of effective GPU programming to improve performance using Python code. You should have an understanding of first-year college or university-level engineering mathematics and physics, and have some experience with Python as well as in any C-based programming language such as C, C++, Go, or Java. Codice articolo LU-9781788993913

Contatta il venditore

Compra nuovo

EUR 59,57
Convertire valuta
Spese di spedizione: EUR 3,41
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Dr. Brian Tuomanen
Editore: Packt Publishing Limited, 2018
ISBN 10: 1788993918 ISBN 13: 9781788993913
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 621. Codice articolo C9781788993913

Contatta il venditore

Compra nuovo

EUR 53,93
Convertire valuta
Spese di spedizione: EUR 10,83
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dr. Brian Tuomanen
ISBN 10: 1788993918 ISBN 13: 9781788993913
Nuovo Paperback

Da: Rarewaves.com USA, London, LONDO, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Build real-world applications with Python 2.7, CUDA 9, and CUDA 10. We suggest the use of Python 2.7 over Python 3.x, since Python 2.7 has stable support across all the libraries we use in this book.Key FeaturesExpand your background in GPU programming-PyCUDA, scikit-cuda, and NsightEffectively use CUDA libraries such as cuBLAS, cuFFT, and cuSolverApply GPU programming to modern data science applicationsBook DescriptionHands-On GPU Programming with Python and CUDA hits the ground running: you'll start by learning how to apply Amdahl's Law, use a code profiler to identify bottlenecks in your Python code, and set up an appropriate GPU programming environment. You'll then see how to "query" the GPU's features and copy arrays of data to and from the GPU's own memory.As you make your way through the book, you'll launch code directly onto the GPU and write full blown GPU kernels and device functions in CUDA C. You'll get to grips with profiling GPU code effectively and fully test and debug your code using Nsight IDE. Next, you'll explore some of the more well-known NVIDIA libraries, such as cuFFT and cuBLAS.With a solid background in place, you will now apply your new-found knowledge to develop your very own GPU-based deep neural network from scratch. You'll then explore advanced topics, such as warp shuffling, dynamic parallelism, and PTX assembly. In the final chapter, you'll see some topics and applications related to GPU programming that you may wish to pursue, including AI, graphics, and blockchain.By the end of this book, you will be able to apply GPU programming to problems related to data science and high-performance computing.What you will learnLaunch GPU code directly from PythonWrite effective and efficient GPU kernels and device functionsUse libraries such as cuFFT, cuBLAS, and cuSolverDebug and profile your code with Nsight and Visual ProfilerApply GPU programming to datascience problemsBuild a GPU-based deep neuralnetwork from scratchExplore advanced GPU hardware features, such as warp shufflingWho this book is forHands-On GPU Programming with Python and CUDA is for developers and data scientists who want to learn the basics of effective GPU programming to improve performance using Python code. You should have an understanding of first-year college or university-level engineering mathematics and physics, and have some experience with Python as well as in any C-based programming language such as C, C++, Go, or Java. Codice articolo LU-9781788993913

Contatta il venditore

Compra nuovo

EUR 62,66
Convertire valuta
Spese di spedizione: EUR 2,29
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tuomanen, Brian
Editore: Packt Publishing, 2018
ISBN 10: 1788993918 ISBN 13: 9781788993913
Nuovo Brossura

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. GPUs are designed for maximum throughput, but are subject to low-level subtleties. In contrast, Python is a high-level language that favours ease of use over speed. In this book, we will combine the power of both Python and CUDA to help you create high perf. Codice articolo 448329762

Contatta il venditore

Compra nuovo

EUR 55,44
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 9 copie di questo libro

Vedi tutti i risultati per questo libro