Articoli correlati a Hands-On Deep Learning with R: A practical guide to...

Hands-On Deep Learning with R: A practical guide to designing, building, and improving neural network models using R - Brossura

 
9781788996839: Hands-On Deep Learning with R: A practical guide to designing, building, and improving neural network models using R

Sinossi

Explore and implement deep learning to solve various real-world problems using modern R libraries such as TensorFlow, MXNet, H2O, and Deepnet

Key Features

  • Understand deep learning algorithms and architectures using R and determine which algorithm is best suited for a specific problem
  • Improve models using parameter tuning, feature engineering, and ensembling
  • Apply advanced neural network models such as deep autoencoders and generative adversarial networks (GANs) across different domains

Book Description

Deep learning enables efficient and accurate learning from a massive amount of data. This book will help you overcome a number of challenges using various deep learning algorithms and architectures with R programming.

This book starts with a brief overview of machine learning and deep learning and how to build your first neural network. You’ll understand the architecture of various deep learning algorithms and their applicable fields, learn how to build deep learning models, optimize hyperparameters, and evaluate model performance. Various deep learning applications in image processing, natural language processing (NLP), recommendation systems, and predictive analytics will also be covered. Later chapters will show you how to tackle recognition problems such as image recognition and signal detection, programmatically summarize documents, conduct topic modeling, and forecast stock market prices. Toward the end of the book, you will learn the common applications of GANs and how to build a face generation model using them. Finally, you’ll get to grips with using reinforcement learning and deep reinforcement learning to solve various real-world problems.

By the end of this deep learning book, you will be able to build and deploy your own deep learning applications using appropriate frameworks and algorithms.

What you will learn

  • Design a feedforward neural network to see how the activation function computes an output
  • Create an image recognition model using convolutional neural networks (CNNs)
  • Prepare data, decide hidden layers and neurons and train your model with the backpropagation algorithm
  • Apply text cleaning techniques to remove uninformative text using NLP
  • Build, train, and evaluate a GAN model for face generation
  • Understand the concept and implementation of reinforcement learning in R

Who this book is for

This book is for data scientists, machine learning engineers, and deep learning developers who are familiar with machine learning and are looking to enhance their knowledge of deep learning using practical examples. Anyone interested in increasing the efficiency of their machine learning applications and exploring various options in R will also find this book useful. Basic knowledge of machine learning techniques and working knowledge of the R programming language is expected.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Michael Pawlus is a data scientist at The Ohio State University where he is currently part of the team building of the data science infrastructure for the Advancement department while also leading the implementation of innovative projects there. Prior to this, Michael was a data scientist at the University of Southern California. In addition to this work, Michael has chaired data science education conferences, published articles on the role of data science within fundraising and currently serves on committees where he is focused on providing a wider variety of educational offerings as well as increasing the diversity of content creators in this space. Michael holds degrees from Grand Valley State University and the University of Sheffield.

Rodger Devine is the Associate Dean of External Affairs for Strategy and Innovation at the USC Dornsife College of Letters, Arts, and Sciences. Rodger's portfolio includes advancement operations, BI, leadership annual giving, program innovation, prospect development, and strategic information management. Prior to USC, Rodger served as the Director of Information, Analytics, and Annual Giving at the Michigan Ross School of Business. Rodger brings nearly 20 years of experience in software engineering, IT operations, BI, project management, organizational development, and leadership. Rodger completed his Masters in data science at the University of Michigan and is a doctoral student in the OCL program at the USC Rossier School of Education.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Risultati della ricerca per Hands-On Deep Learning with R: A practical guide to...

Foto dell'editore

Pawlus, Michael; Devine, Rodger
Editore: Packt Publishing, 2020
ISBN 10: 1788996836 ISBN 13: 9781788996839
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar2912160182974

Contatta il venditore

Compra nuovo

EUR 38,32
Convertire valuta
Spese di spedizione: EUR 3,44
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Pawlus, Michael; Devine, Rodger
Editore: 4/24/2020, 2020
ISBN 10: 1788996836 ISBN 13: 9781788996839
Nuovo Brossura

Da: BargainBookStores, Grand Rapids, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Hands-On Deep Learning with R: A practical guide to designing, building, and improving neural network models using R (Paperback or Softback) 1.25. Codice articolo BBS-9781788996839

Contatta il venditore

Compra nuovo

EUR 43,14
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Michael Pawlus
Editore: Packt Publishing Limited, 2020
ISBN 10: 1788996836 ISBN 13: 9781788996839
Nuovo PAP
Print on Demand

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781788996839

Contatta il venditore

Compra nuovo

EUR 43,54
Convertire valuta
Spese di spedizione: EUR 5,76
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Pawlus, Michael; Devine, Rodger
Editore: Packt Publishing, 2020
ISBN 10: 1788996836 ISBN 13: 9781788996839
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781788996839_new

Contatta il venditore

Compra nuovo

EUR 42,88
Convertire valuta
Spese di spedizione: EUR 13,75
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Pawlus, Michael
Editore: Packt Publishing 2020-04, 2020
ISBN 10: 1788996836 ISBN 13: 9781788996839
Nuovo PF

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

PF. Condizione: New. Codice articolo 6666-IUK-9781788996839

Contatta il venditore

Compra nuovo

EUR 39,20
Convertire valuta
Spese di spedizione: EUR 17,78
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Foto dell'editore

Pawlus, Michael; Devine, Rodger
Editore: Packt Publishing, Limited, 2020
ISBN 10: 1788996836 ISBN 13: 9781788996839
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand pp. 330. Codice articolo 385870441

Contatta il venditore

Compra nuovo

EUR 53,65
Convertire valuta
Spese di spedizione: EUR 7,46
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Michael Pawlus
Editore: Packt Publishing Limited, 2020
ISBN 10: 1788996836 ISBN 13: 9781788996839
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. Codice articolo C9781788996839

Contatta il venditore

Compra nuovo

EUR 47,96
Convertire valuta
Spese di spedizione: EUR 13,79
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Michael Pawlus
Editore: Packt Publishing, 2020
ISBN 10: 1788996836 ISBN 13: 9781788996839
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Explore and implement deep learning to solve various real-world problems using modern R libraries such as TensorFlow, MXNet, H2O, and DeepnetKey FeaturesUnderstand deep learning algorithms and architectures using R and determine which algorithm is best suited for a specific problemImprove models using parameter tuning, feature engineering, and ensemblingApply advanced neural network models such as deep autoencoders and generative adversarial networks (GANs) across different domainsBook DescriptionDeep learning enables efficient and accurate learning from a massive amount of data. This book will help you overcome a number of challenges using various deep learning algorithms and architectures with R programming.This book starts with a brief overview of machine learning and deep learning and how to build your first neural network. You'll understand the architecture of various deep learning algorithms and their applicable fields, learn how to build deep learning models, optimize hyperparameters, and evaluate model performance. Various deep learning applications in image processing, natural language processing (NLP), recommendation systems, and predictive analytics will also be covered. Later chapters will show you how to tackle recognition problems such as image recognition and signal detection, programmatically summarize documents, conduct topic modeling, and forecast stock market prices. Toward the end of the book, you will learn the common applications of GANs and how to build a face generation model using them. Finally, you'll get to grips with using reinforcement learning and deep reinforcement learning to solve various real-world problems.By the end of this deep learning book, you will be able to build and deploy your own deep learning applications using appropriate frameworks and algorithms.What you will learnDesign a feedforward neural network to see how the activation function computes an outputCreate an image recognition model using convolutional neural networks (CNNs)Prepare data, decide hidden layers and neurons and train your model with the backpropagation algorithmApply text cleaning techniques to remove uninformative text using NLPBuild, train, and evaluate a GAN model for face generationUnderstand the concept and implementation of reinforcement learning in RWho this book is forThis book is for data scientists, machine learning engineers, and deep learning developers who are familiar with machine learning and are looking to enhance their knowledge of deep learning using practical examples. Anyone interested in increasing the efficiency of their machine learning applications and exploring various options in R will also find this book useful. Basic knowledge of machine learning techniques and working knowledge of the R programming language is expected. Codice articolo 9781788996839

Contatta il venditore

Compra nuovo

EUR 62,74
Convertire valuta
Spese di spedizione: EUR 31,08
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Pawlus, Michael|Devine, Rodger
Editore: Packt Publishing, 2020
ISBN 10: 1788996836 ISBN 13: 9781788996839
Nuovo Brossura

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Deep learning enables efficient and accurate learning from data. Developers working with R will be able to put their knowledge to work with this practical guide to deep learning. The book provides a hands-on approach to implementation and associated methodo. Codice articolo 448329789

Contatta il venditore

Compra nuovo

EUR 48,76
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Pawlus, Michael, Devine, Rodger
Editore: Packt Publishing, 2020
ISBN 10: 1788996836 ISBN 13: 9781788996839
Nuovo Paperback

Da: Mispah books, Redhill, SURRE, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. New. book. Codice articolo ERICA77317889968366

Contatta il venditore

Compra nuovo

EUR 74,49
Convertire valuta
Spese di spedizione: EUR 28,70
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello