Deep learning has become a trending area of research due to its adaptive characteristics and high levels of applicability. In recent years, researchers have begun applying deep learning strategies to image analysis and pattern recognition for solving technical issues within image classification. As these technologies continue to advance, professionals have begun translating this intelligent programming language into mobile applications for devices. Programmers and web developers are in need of significant research on how to successfully develop pattern recognition applications using intelligent programming. MatConvNet Deep Learning and iOS Mobile App Design for Pattern Recognition: Emerging Research and Opportunities is an essential reference source that presents a solution to developing intelligent pattern recognition Apps on iOS devices based on MatConvNet deep learning. Featuring research on topics such as medical image diagnosis, convolutional neural networks, and character classification, this book is ideally designed for programmers, developers, researchers, practitioners, engineers, academicians, students, scientists, and educators seeking coverage on the specific development of iOS mobile applications using pattern recognition strategies.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 1,21 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: PBShop.store US, Wood Dale, IL, U.S.A.
HRD. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L1-9781799815549
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
HRD. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L1-9781799815549
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781799815549_new
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents a solution to developing intelligent pattern recognition apps on iOS devices based on MatConvNet deep learning. The book includes research on a range of topics, including medical image diagnosis, convolutional neural networks, and character classif. Codice articolo 448341849
Quantità: Più di 20 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2912160207872
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Deep learning has become a trending area of research due to its adaptive characteristics and high levels of applicability. In recent years, researchers have begun applying deep learning strategies to image analysis and pattern recognition for solving technical issues within image classification. As these technologies continue to advance, professionals have begun translating this intelligent programming language into mobile applications for devices. Programmers and web developers are in need of significant research on how to successfully develop pattern recognition applications using intelligent programming. MatConvNet Deep Learning and iOS Mobile App Design for Pattern Recognition: Emerging Research and Opportunities is an essential reference source that presents a solution to developing intelligent pattern recognition Apps on iOS devices based on MatConvNet deep learning. Featuring research on topics such as medical image diagnosis, convolutional neural networks, and character classification, this book is ideally designed for programmers, developers, researchers, practitioners, engineers, academicians, students, scientists, and educators seeking coverage on the specific development of iOS mobile applications using pattern recognition strategies. Codice articolo 9781799815549
Quantità: 1 disponibili