Articoli correlati a Codeless Time Series Analysis with KNIME: A practical...

Codeless Time Series Analysis with KNIME: A practical guide to implementing forecasting models for time series analysis applications - Brossura

 
9781803232065: Codeless Time Series Analysis with KNIME: A practical guide to implementing forecasting models for time series analysis applications

Sinossi

Perform time series analysis using KNIME Analytics Platform, covering both statistical methods and machine learning-based methods

Key Features

  • Gain a solid understanding of time series analysis and its applications using KNIME
  • Learn how to apply popular statistical and machine learning time series analysis techniques
  • Integrate other tools such as Spark, H2O, and Keras with KNIME within the same application

Book Description

This book will take you on a practical journey, teaching you how to implement solutions for many use cases involving time series analysis techniques.

This learning journey is organized in a crescendo of difficulty, starting from the easiest yet effective techniques applied to weather forecasting, then introducing ARIMA and its variations, moving on to machine learning for audio signal classification, training deep learning architectures to predict glucose levels and electrical energy demand, and ending with an approach to anomaly detection in IoT. There's no time series analysis book without a solution for stock price predictions and you'll find this use case at the end of the book, together with a few more demand prediction use cases that rely on the integration of KNIME Analytics Platform and other external tools.

By the end of this time series book, you'll have learned about popular time series analysis techniques and algorithms, KNIME Analytics Platform, its time series extension, and how to apply both to common use cases.

What you will learn

  • Install and configure KNIME time series integration
  • Implement common preprocessing techniques before analyzing data
  • Visualize and display time series data in the form of plots and graphs
  • Separate time series data into trends, seasonality, and residuals
  • Train and deploy FFNN and LSTM to perform predictive analysis
  • Use multivariate analysis by enabling GPU training for neural networks
  • Train and deploy an ML-based forecasting model using Spark and H2O

Who this book is for

This book is for data analysts and data scientists who want to develop forecasting applications on time series data. While no coding skills are required thanks to the codeless implementation of the examples, basic knowledge of KNIME Analytics Platform is assumed. The first part of the book targets beginners in time series analysis, and the subsequent parts of the book challenge both beginners as well as advanced users by introducing real-world time series applications.

Table of Contents

  1. Introducing Time Series Analysis
  2. Introduction to KNIME Analytics Platform
  3. Preparing Data for Time Series Analysis
  4. Time Series Visualization
  5. Time Series Components and Statistical Properties
  6. Humidity Forecasting with Classical Methods
  7. Forecasting the Temperature with ARIMA and SARIMA Models
  8. Audio Signal Classification with an FFT and a Gradient Boosted Forest
  9. Training and Deploying a Neural Network to Predict Glucose Levels
  10. Predicting Energy Demand with an LSTM Model
  11. Anomaly Detection – Predicting Failure with No Failure Examples
  12. Predicting Taxi Demand on the Spark Platform
  13. GPU Accelerated Model for Multivariate Forecasting
  14. Combining KNIME and H2O to Predict Stock Prices

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Corey Weisinger is a data scientist with KNIME in Austin, Texas. He studied mathematics at Michigan State University focusing on actuarial techniques and functional analysis. Before coming to work for KNIME, he worked as an analytics consultant for the auto industry in Detroit, Michigan. He currently focuses on signal processing and numeric prediction techniques and is the author of the Alteryx to KNIME guidebook.

Maarit Widmann is a data scientist and an educator at KNIME: the instructor behind the KNIME self-paced courses and a teacher in the KNIME courses. She is the author of the From Modeling to Model Evaluation e-book and she publishes regularly in the KNIME blog and on Medium. She holds a Master’s degree in data science and a Bachelor’s degree in sociology.

Daniele Tonini is an experienced advisor and educator in the field of advanced business analytics and machine learning. In the last 15 years, he designed and deployed predictive analytics systems, and data quality management and dynamic reporting tools, mainly for customer intelligence, risk management, and pricing applications. He is an Academic Fellow at Bocconi University (Department of Decision Science) and SDA Bocconi School of Management (Decision Sciences & Business Analytics Faculty). He’s also Adjunct Professor in data mining at Franklin University, Switzerland. He currently teaches statistics, predictive analytics for data-driven decision making, big data and databases, market research, and data mining.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

EUR 5,77 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Risultati della ricerca per Codeless Time Series Analysis with KNIME: A practical...

Foto dell'editore

Corey Weisinger
Editore: Packt Publishing Limited, 2022
ISBN 10: 1803232064 ISBN 13: 9781803232065
Nuovo PAP
Print on Demand

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781803232065

Contatta il venditore

Compra nuovo

EUR 47,14
Convertire valuta
Spese di spedizione: EUR 5,77
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Weisinger, Corey; Widmann, Maarit; Tonini, Daniele
Editore: Packt Publishing, 2022
ISBN 10: 1803232064 ISBN 13: 9781803232065
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781803232065

Contatta il venditore

Compra nuovo

EUR 46,20
Convertire valuta
Spese di spedizione: EUR 7,76
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Corey Weisinger
Editore: Packt Publishing Limited, 2022
ISBN 10: 1803232064 ISBN 13: 9781803232065
Nuovo PAP
Print on Demand

Da: PBShop.store US, Wood Dale, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781803232065

Contatta il venditore

Compra nuovo

EUR 52,70
Convertire valuta
Spese di spedizione: EUR 1,93
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Weisinger, Corey; Widmann, Maarit; Tonini, Daniele
Editore: Packt Publishing, 2022
ISBN 10: 1803232064 ISBN 13: 9781803232065
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781803232065_new

Contatta il venditore

Compra nuovo

EUR 46,45
Convertire valuta
Spese di spedizione: EUR 10,30
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Corey Weisinger
Editore: Packt Publishing Limited, 2022
ISBN 10: 1803232064 ISBN 13: 9781803232065
Nuovo Paperback / softback
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. Codice articolo C9781803232065

Contatta il venditore

Compra nuovo

EUR 51,25
Convertire valuta
Spese di spedizione: EUR 6,06
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Weisinger, Corey
ISBN 10: 1803232064 ISBN 13: 9781803232065
Nuovo Paperback or Softback

Da: BargainBookStores, Grand Rapids, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback or Softback. Condizione: New. Codeless Time Series Analysis with KNIME: A practical guide to implementing forecasting models for time series analysis applications 1.48. Book. Codice articolo BBS-9781803232065

Contatta il venditore

Compra nuovo

EUR 45,79
Convertire valuta
Spese di spedizione: EUR 11,65
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tonini, Daniele|Weisinger, Corey|Widmann, Maarit
Editore: Packt Publishing, 2022
ISBN 10: 1803232064 ISBN 13: 9781803232065
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. &Uumlber den AutorrnrnCorey Weisinger is a data scientist with KNIME in Austin, Texas. He studied mathematics at Michigan State University focusing on actuarial techniques and functional analysis. Before coming to work for KNIME, he worked as a. Codice articolo 673503842

Contatta il venditore

Compra nuovo

EUR 57,24
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Corey Weisinger
Editore: Packt Publishing, 2022
ISBN 10: 1803232064 ISBN 13: 9781803232065
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Perform time series analysis using KNIME Analytics Platform, covering both statistical methods and machine learning-based methods Key Features:Gain a solid understanding of time series analysis and its applications using KNIME Learn how to apply popular statistical and machine learning time series analysis techniques Integrate other tools such as Spark, H2O, and Keras with KNIME within the same application Book Description: This book will take you on a practical journey, teaching you how to implement solutions for many use cases involving time series analysis techniques. This learning journey is organized in a crescendo of difficulty, starting from the easiest yet effective techniques applied to weather forecasting, then introducing ARIMA and its variations, moving on to machine learning for audio signal classification, training deep learning architectures to predict glucose levels and electrical energy demand, and ending with an approach to anomaly detection in IoT. There's no time series analysis book without a solution for stock price predictions and you'll find this use case at the end of the book, together with a few more demand prediction use cases that rely on the integration of KNIME Analytics Platform and other external tools. By the end of this time series book, you'll have learned about popular time series analysis techniques and algorithms, KNIME Analytics Platform, its time series extension, and how to apply both to common use cases. What You Will Learn:Install and configure KNIME time series integration Implement common preprocessing techniques before analyzing data Visualize and display time series data in the form of plots and graphs Separate time series data into trends, seasonality, and residuals Train and deploy FFNN and LSTM to perform predictive analysis Use multivariate analysis by enabling GPU training for neural networks Train and deploy an ML-based forecasting model using Spark and H2O Who this book is for: This book is for data analysts and data scientists who want to develop forecasting applications on time series data. While no coding skills are required thanks to the codeless implementation of the examples, basic knowledge of KNIME Analytics Platform is assumed. The first part of the book targets beginners in time series analysis, and the subsequent parts of the book challenge both beginners as well as advanced users by introducing real-world time series applications. Codice articolo 9781803232065

Contatta il venditore

Compra nuovo

EUR 70,94
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Widmann Maarit Weisinger Corey
Editore: Packt Publishing, Limited, 2022
ISBN 10: 1803232064 ISBN 13: 9781803232065
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand pp. 294. Codice articolo 402240840

Contatta il venditore

Compra nuovo

EUR 79,25
Convertire valuta
Spese di spedizione: EUR 10,14
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Weisinger, Corey; Widmann, Maarit; Tonini, Daniele
Editore: Packt Publishing, 2022
ISBN 10: 1803232064 ISBN 13: 9781803232065
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar2912160219892

Contatta il venditore

Compra nuovo

EUR 41,16
Convertire valuta
Spese di spedizione: EUR 64,70
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello