Learn the intricacies of data description, issue identification, and practical problem-solving, armed with essential techniques and expert tips.
Jumping into data analysis without proper data cleaning will certainly lead to incorrect results. The Python Data Cleaning Cookbook - Second Edition will show you tools and techniques for cleaning and handling data with Python for better outcomes.
Fully updated to the latest version of Python and all relevant tools, this book will teach you how to manipulate and clean data to get it into a useful form. he current edition focuses on advanced techniques like machine learning and AI-specific approaches and tools for data cleaning along with the conventional ones. The book also delves into tips and techniques to process and clean data for ML, AI, and NLP models. You will learn how to filter and summarize data to gain insights and better understand what makes sense and what does not, along with discovering how to operate on data to address the issues you've identified. Next, you’ll cover recipes for using supervised learning and Naive Bayes analysis to identify unexpected values and classification errors and generate visualizations for exploratory data analysis (EDA) to identify unexpected values. Finally, you’ll build functions and classes that you can reuse without modification when you have new data.
By the end of this Data Cleaning book, you'll know how to clean data and diagnose problems within it.
This book is for anyone looking for ways to handle messy, duplicate, and poor data using different Python tools and techniques. The book takes a recipe-based approach to help you to learn how to clean and manage data with practical examples.
Working knowledge of Python programming is all you need to get the most out of the book.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Michael Walker has worked as a data analyst for over 30 years at a variety of educational institutions. He is currently the CIO at College Unbound in Providence, Rhode Island, in the United States. He has also taught data science, research methods, statistics, and computer programming to undergraduates since 2006.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 16,93 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 7,62 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781803239873
Quantità: Più di 20 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781803239873
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Python Data Cleaning Cookbook - Second Edition: Prepare your data for analysis with pandas, NumPy, Matplotlib, scikit-learn, and OpenAI 1.82. Book. Codice articolo BBS-9781803239873
Quantità: 5 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781803239873
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 47852762-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781803239873_new
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 47852762
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. Codice articolo C9781803239873
Quantità: Più di 20 disponibili
Da: Rarewaves.com UK, London, Regno Unito
Paperback. Condizione: New. The book shows you how to clean, wrangle, and view data from multiple perspectives, including dataset and column attributes. You will cover common and not-so-common challenges that are faced while cleaning messy data for complex situations and learn to manipulate data to get it down to a form that can be useful for making the right decisions. Codice articolo LU-9781803239873
Quantità: Più di 20 disponibili
Da: Rarewaves USA, OSWEGO, IL, U.S.A.
Paperback. Condizione: New. Learn the intricacies of data description, issue identification, and practical problem-solving, armed with essential techniques and expert tips.Key FeaturesGet to grips with new techniques for data preprocessing and cleaning for machine learning and NLP modelsUse new and updated AI tools and techniques for data cleaning tasksClean, monitor, and validate large data volumes to diagnose problems using cutting-edge methodologies including Machine learning and AIBook DescriptionJumping into data analysis without proper data cleaning will certainly lead to incorrect results. The Python Data Cleaning Cookbook - Second Edition will show you tools and techniques for cleaning and handling data with Python for better outcomes.Fully updated to the latest version of Python and all relevant tools, this book will teach you how to manipulate and clean data to get it into a useful form. he current edition focuses on advanced techniques like machine learning and AI-specific approaches and tools for data cleaning along with the conventional ones. The book also delves into tips and techniques to process and clean data for ML, AI, and NLP models. You will learn how to filter and summarize data to gain insights and better understand what makes sense and what does not, along with discovering how to operate on data to address the issues you've identified. Next, you'll cover recipes for using supervised learning and Naive Bayes analysis to identify unexpected values and classification errors and generate visualizations for exploratory data analysis (EDA) to identify unexpected values. Finally, you'll build functions and classes that you can reuse without modification when you have new data.By the end of this Data Cleaning book, you'll know how to clean data and diagnose problems within it.What you will learnUsing OpenAI tools for various data cleaning tasksProducing summaries of the attributes of datasets, columns, and rowsAnticipating data-cleaning issues when importing tabular data into pandasApplying validation techniques for imported tabular dataImproving your productivity in pandas by using method chainingRecognizing and resolving common issues like dates and IDsSetting up indexes to streamline data issue identificationUsing data cleaning to prepare your data for ML and AI modelsWho this book is forThis book is for anyone looking for ways to handle messy, duplicate, and poor data using different Python tools and techniques. The book takes a recipe-based approach to help you to learn how to clean and manage data with practical examples.Working knowledge of Python programming is all you need to get the most out of the book. Codice articolo LU-9781803239873
Quantità: Più di 20 disponibili